Intelligence as <u>Search</u> Intelligence as <u>Adversarial Search</u> Intelligence as <u>Function Approximation</u> Intelligence as...

- Russell & Norvig Ch 17: Making Complex Decisions
- Russell & Norvig Ch 22: Reinforcement Learning
- OpenAI Spinning Up: Key Concepts <u>https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-conce</u> <u>pts-and-terminology</u>
- <u>https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html</u> A brief introduction to reinforcement learning Kevin Murphy

Search:

Need good heuristics

Adversarial Search: Need a good evaluation function

Machine Learning:

Need data examples to learn a good approximation

Search:

Developer writes heuristics

Imperative specification for *how* to solve the problem

Adversarial Search:

Developer writes evaluation function

Machine Learning:

Developer collects data

Implicit specification via examples

Search:

Developer writes heuristics

Imperative specification for *how* to solve the problem

Adversarial Search:

Developer writes evaluation function

Machine Learning:

Developer collects data

Implicit specification via examples

Reinforcement Learning:

Developer defines state space, actions, and reward function

<u>Reward Function:</u> Describes how "good" a state transition is

The reward function is an abstract definition of good behavior

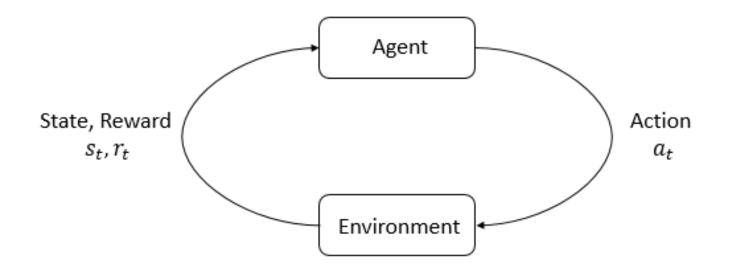
Different from machine learning...

ML relies on concrete examples of good behavior

Different from search in Weeks 1 & 2...

Those approaches relied on specifications of *how* to do good behavior

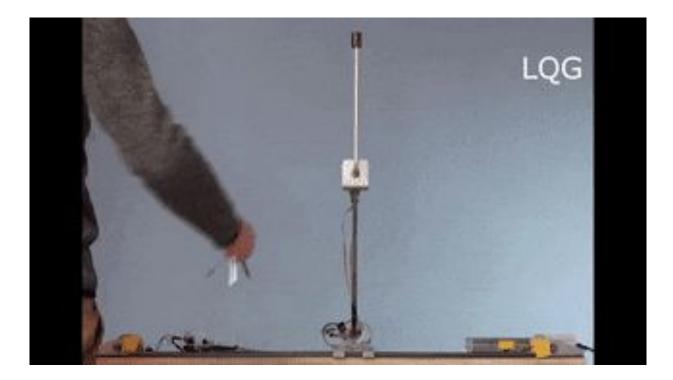
RL involves an agent-environment interaction loop

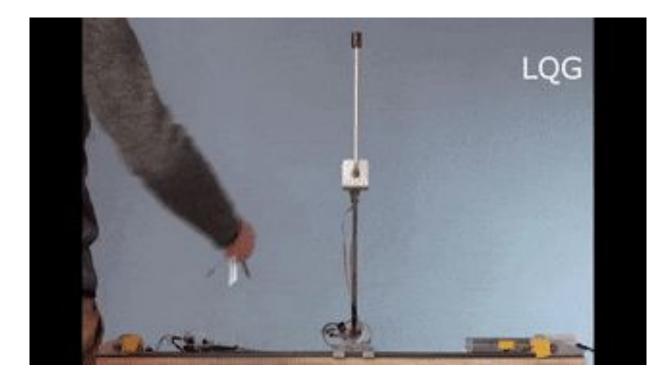


Markov Decision Process (MDP)

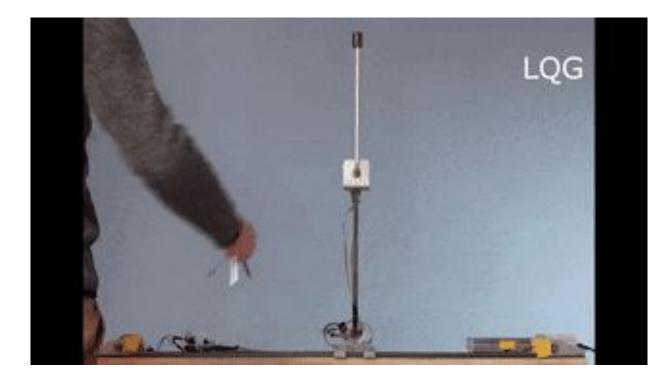
An MDP is a 5-tuple, $\langle S, A, R, P, \rho_0 \rangle$

S	set of valid states	
A	set of valid actions	
$R: S \times A \times S \to \mathbb{R}$	reward function	
$\begin{tabular}{ c c } P:S\times A\to \mathcal{P}(S) \end{tabular}$	transition probability function	P(s' s, a) is the probability of transitioning into state s' if you start in state s and take action a
$\rho_0:S\to\mathbb{R}$	initial state distribution	$\rho_0(s)$ is the probability of starting in state s

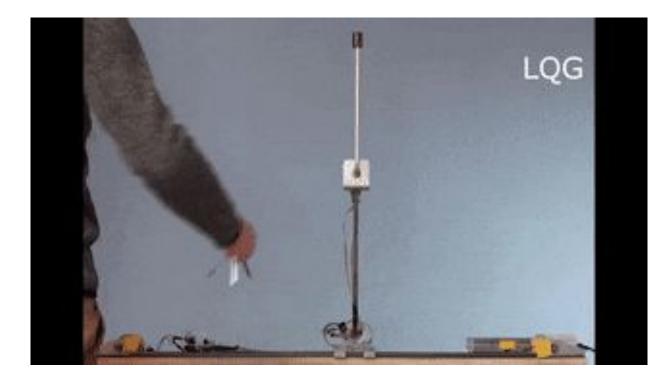




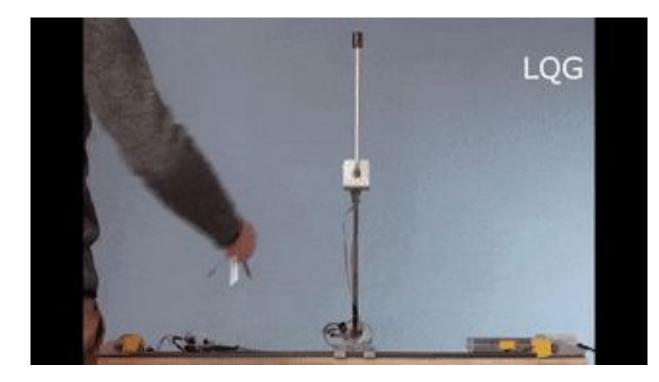
• States?



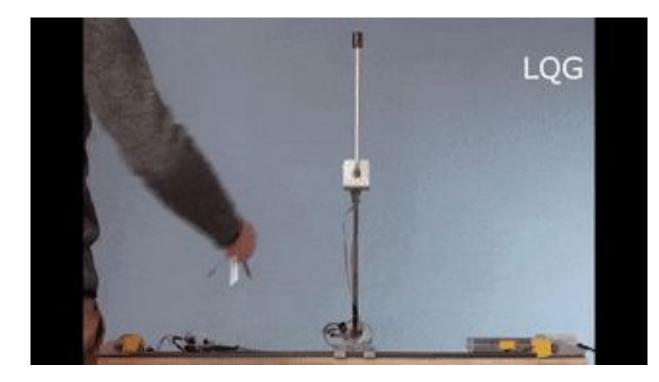
- States?
 - Roller position
 - Pendulum angle



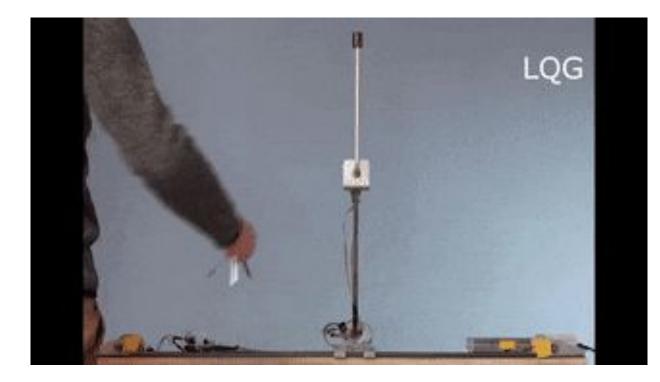
- States?
 - Roller position
 - Pendulum angle
- Actions?



- States?
 - Roller position
 - Pendulum angle
- Actions?
 - Left/right



- States?
 - Roller position
 - Pendulum angle
- Actions?
 - Left/right
- Rewards?



- States?
 - Roller position
 - Pendulum angle
- Actions?
 - Left/right
- Rewards?
 - Angle

States, Actions, Rewards

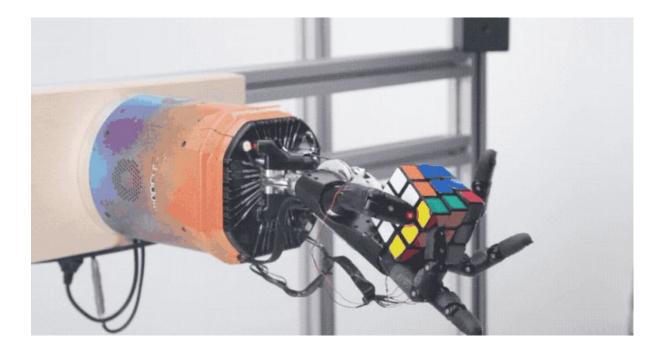
• States

- How we represent the world
- Actions
 - What our agent can do in the state
- Rewards
 - "Praise" our agent when it does what we want, strengthen its policy
 - "Punish" our agent when it makes mistakes, tell it to change its policy

Video Games

Basketball??

Robots



What's the "goal" of RL training?

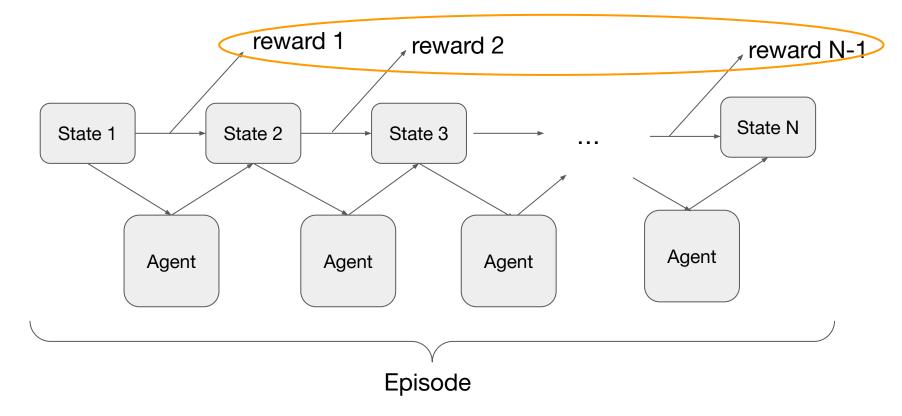
There are algorithmic "goals" in supervised machine learning:

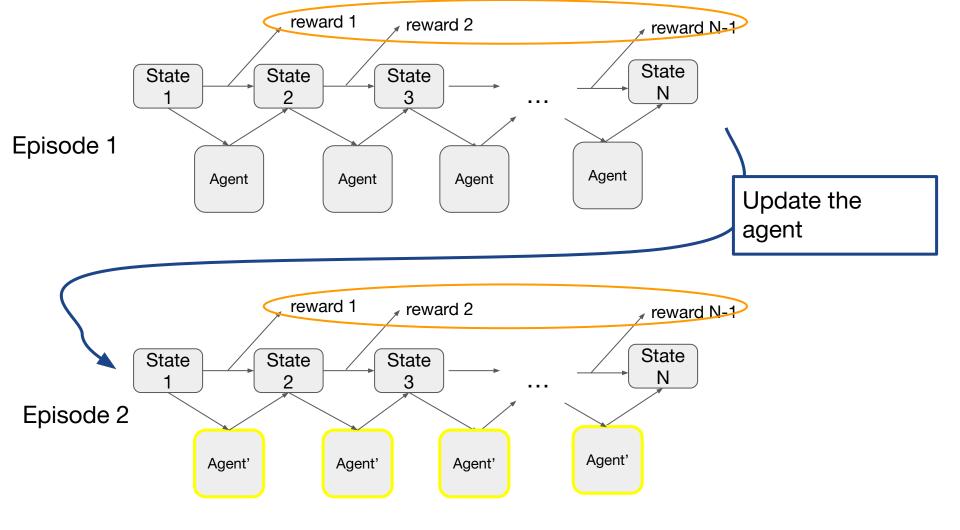
- Minimize our prediction error on observed data (during training)
- Minimize our prediction error on unseen data (generalization)

What's the goal of RL?

• Learn a policy that maximizes expected cumulative discounted reward

Cumulative Reward





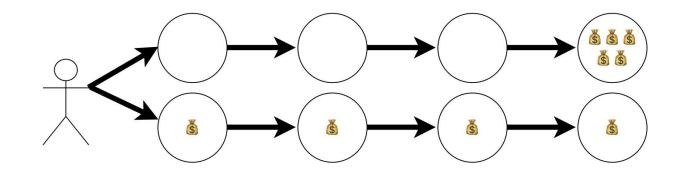
Cumulative Discounted Reward

Cumulative:

Consider future rewards

Discounted:

Immediate rewards might be better than later rewards



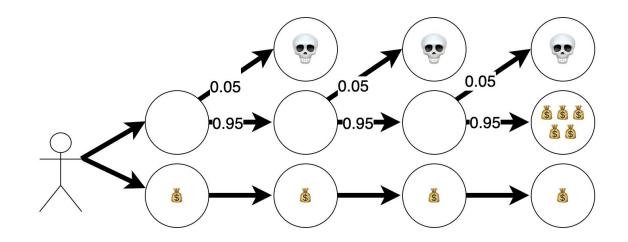
Cumulative Discounted Reward

Cumulative:

Consider future rewards

Discounted:

Immediate rewards might be better than later rewards



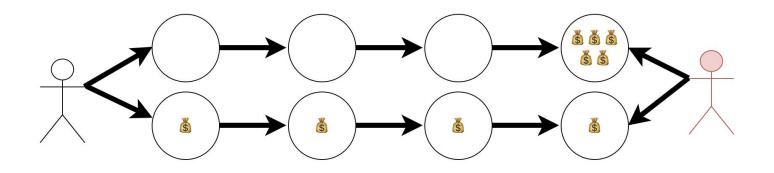
Cumulative Discounted Reward

Cumulative:

Consider future rewards

Discounted:

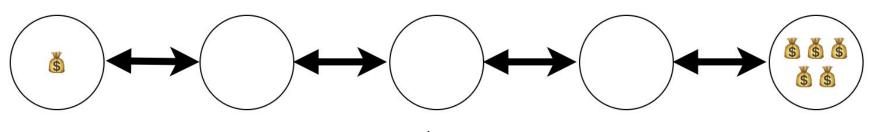
Immediate rewards might be better than later rewards



Reward Discounting

Discounted: Immediate rewards might be better than later rewards

- Each step discounted by a "discount factor" γ
- $0 \ge \gamma \le 1$, represents how "secure" we are in getting our reward
- In practice usually $\gamma < 1$

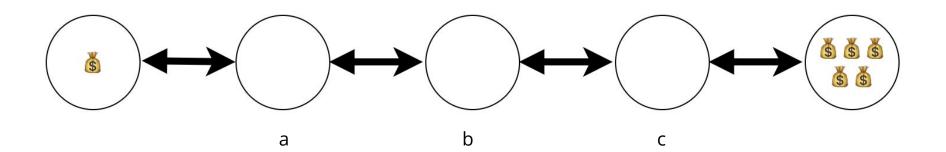


а

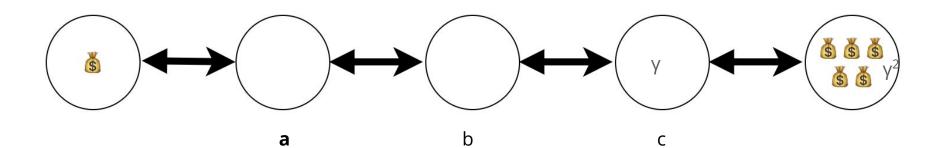
b

С

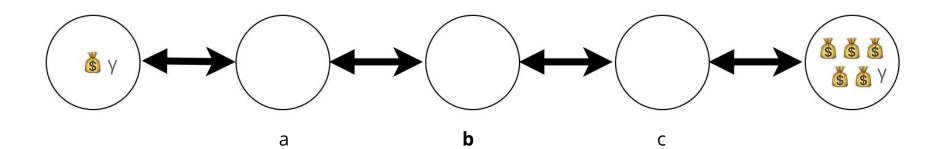
- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?



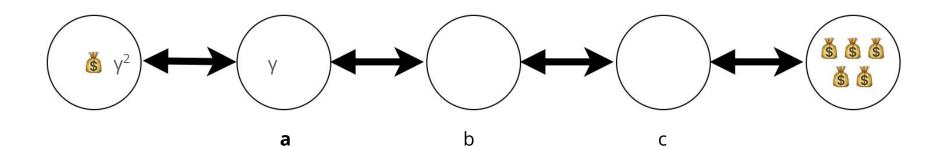
- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?



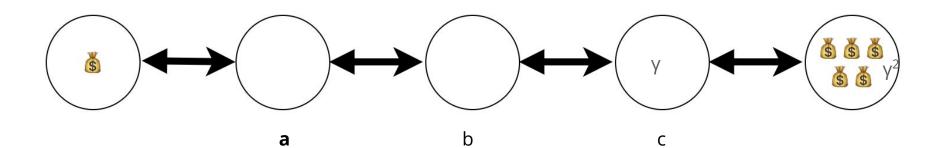
- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?



- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?



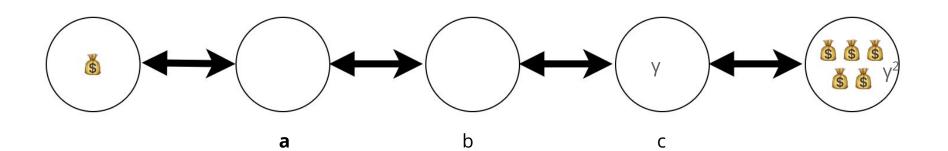
- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?



- Assume determinism
- γ = 1
- γ = 0.1
- What γ would make both look equally good to a?

$$\circ \quad 1=0+5 \ ^{\star} \ \gamma^2$$

 $\circ \gamma = 1/sqrt(5)$



Infinite Rewards?

How far should we look ahead?

Limit the depth Issues: Limits applicability, increases state space

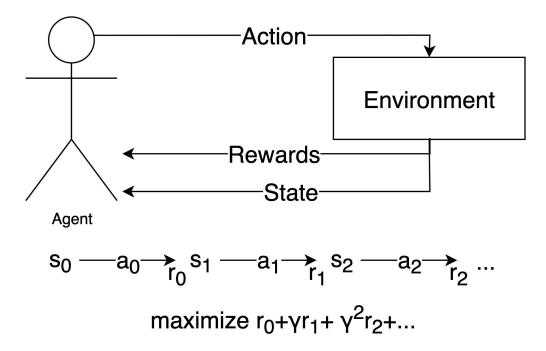
Forever, but: Keep $\gamma < 1$ Time penalty

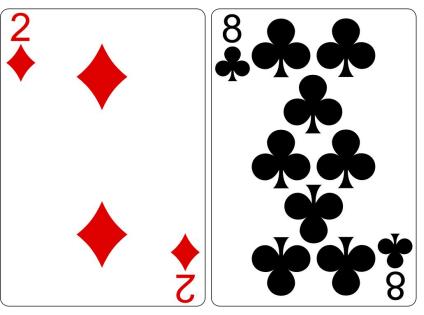
Functions in RL

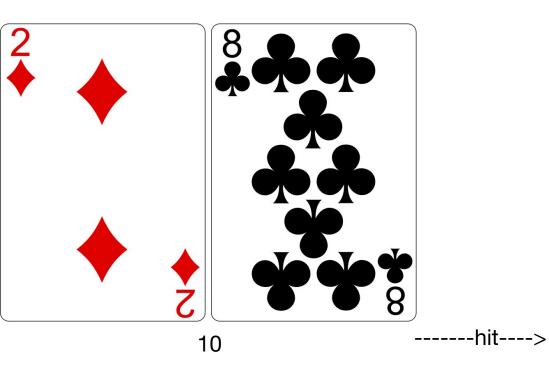
Utility (aka Value):

Quality

Reward Maximization







BLACKJACK CHEAT SHEET

YOUR				D	EALER	'S CAR	D			
HAND	2	3	4	5	6	7	8	9	10	Α
8	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
9	Н	D/H	D/H	D/H	D/H	н	н	н	н	Н
10	D/H	D/H	D/H	D/H	D/H	D/H	D/H	D/H	н	н
11	D/H	D/H	D/H	D/H	D/H	D/H	D/H	D/H	D/H	D/H
12	Н	Н	S	S	S	Н	н	Н	Н	Н
13	S	S	S	S	S	н	н	Н	н	Н
14	S	S	S	S	S	н	н	н	н	Н
15	S	S	S	S	S	Н	н	Н	R/H	Н
16	S	S	S	S	S	Н	н	R/H	R/H	R/H
17	S	S	S	S	S	S	S	S	S	S
A,2	Н	Н	Н	D/H	D/H	Н	Н	Н	Н	Н
A,3	H	Н	Н	D/H	D/H	Н	Н	Н	Н	Н
A,4	Н	н	D/H	D/H	D/H	н	н	н	н	н
A,5	H	Н	D/H	D/H	D/H	Н	Н	Н	Н	н
A,6	Н	D/H	D/H	D/H	D/H	н	н	н	Н	Н
A,7	S	D/S	D/S	D/S	D/S	S	S	н	Н	н
A,8	S	S	S	S	S	S	S	S	S	S
2,2	P/H	P/H	Р	Р	Р	Р	н	н	Н	н
3,3	P/H	P/H	Р	Р	Ρ	Р	н	Н	Н	н
4,4	Н	Н	н	P/H	P/H	н	н	Н	н	н
5,5	D/H	D/H	D/H	D/H	D/H	D/H	D/H	D/H	н	н
6,6	P/H	Р	Ρ	Р	Ρ	Н	Н	Н	Н	н
7,7	Р	Ρ	Р	Р	Р	Р	н	н	н	н
8,8	Ρ	Ρ	Ρ	Р	Р	Р	Р	Ρ	Ρ	Р
9,9	Ρ	Ρ	Р	Ρ	Ρ	S	Р	Р	S	S
10,10	S	S	S	S	S	S	S	S	S	S
A,A	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р

-					
T	to	ch		od	ia
	LE	CI	υμ	EU	IC

double down if possible, otherwise hit

double down if possible, otherwise stand

surrender if possible, otherwise hit

split if double down after split is possible, otherwise hit

H hit S stand

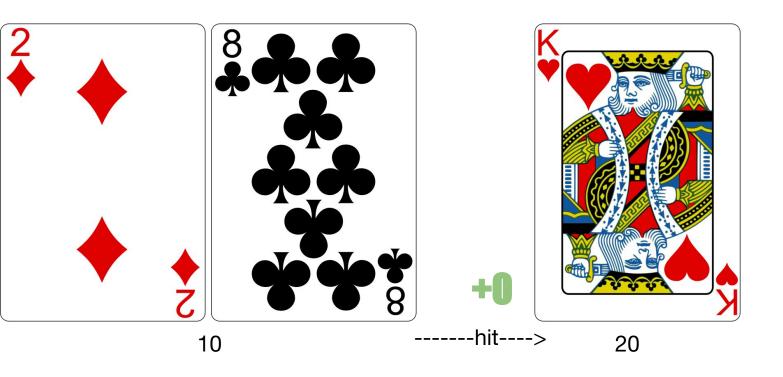
P split

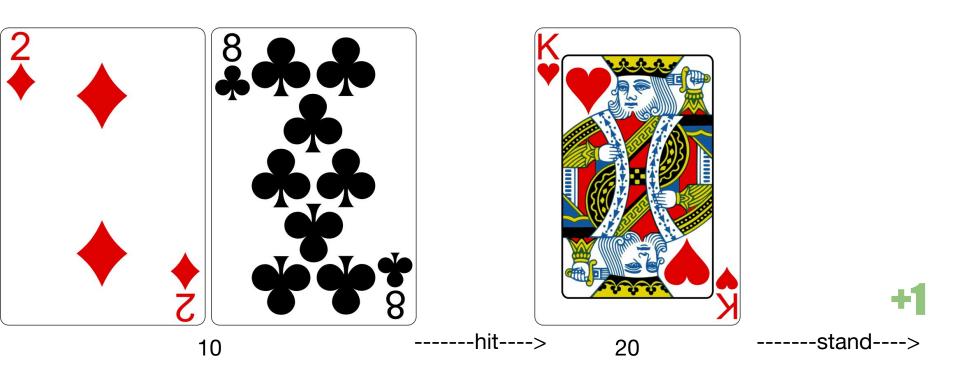
D/H

D/S

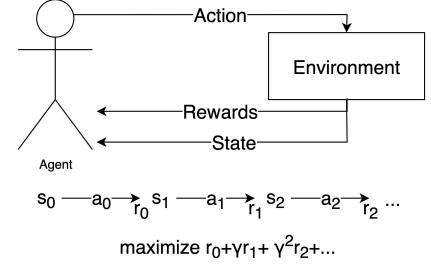
P/H

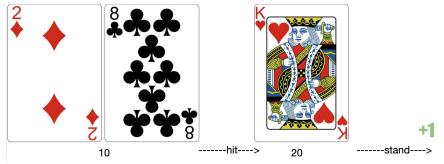
R/H





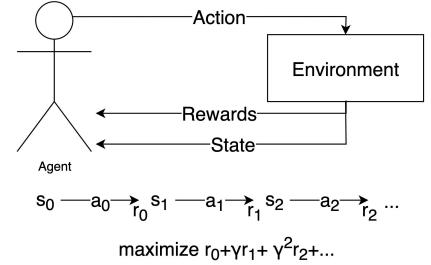
- 10 -hit \rightarrow +0, 20 -stand \rightarrow +1, <end>
 - What did we learn?

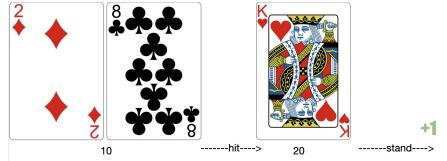




10 -hit \rightarrow +0, 20 -stand \rightarrow +1, <end>

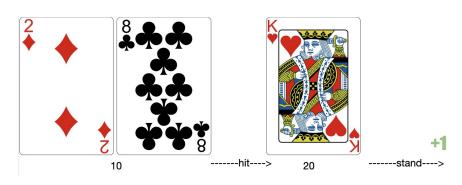
- What did we learn?
 - Standing on 20 good

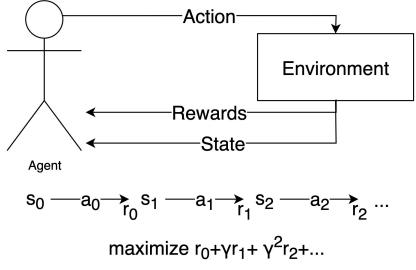




10 -hit \rightarrow +0, 20 -stand \rightarrow +1, <end>

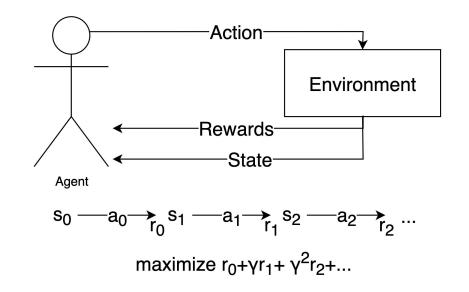
- What did we learn?
 - Standing on 20 good
 - +1
 - Hitting on 10 good
 - +1*γ=γ





10 -hit \rightarrow +0, 20 -stand \rightarrow +1, <end>

- What did we learn?
 - Standing on 20 good
 - +1
 - Hitting on 10 good
 - +1*γ=γ
- Issues?



Q Learning

• Learning a Q function that takes in a state and returns the rewards for different actions

•
$$Q(s) = [r_{a0}, r_{a1}, r_{a2}, ..., r_{an}]$$

• Update Q function to reflect the cumulative discounted reward

$$\circ \quad Q(s,a) = r_{s,a} + \gamma^* max_{a'}(Q(s',a'))$$

• Take the action that will return the optimal value

•
$$A = argmax_a(Q(s,a))$$

State	A ₀	A ₁	A ₂	A ₃
S ₀	r _{s0,A0}	r _{s0,A1}	r _{s0,A2}	r _{s0,A3}
S ₁	r _{s1,A0}	r _{s1,A1}	r _{s1,A2}	r _{s1,A3}
S ₂	r _{s2,A0}	r _{s2,A1}	r _{s2,A2}	r _{s2,A3}

- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack

State (sum total of cards)	stand	hit
2	0	0
3	0	0
	0	0
21	0	0

- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

State (sum total of cards)	stand	hit
2	0	0
3	0	0
	0	0
21	0	0

- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

State (sum total of cards)	stand	hit
2	-1	-0.745432
3	-0.9997	0.6532
21	1	-1

- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table
- Argmax(Q) -> policy

State (sum total of cards)	Action
2	hit
3	hit
21	stand

- Table that tells us the "quality" of an action at different states
- Q(s,a) -> cumulative discount reward of applying action a at stat s
- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Argmax(Q) -> policy

State (sum total of cards)	Action
2	hit
3	hit
21	stand

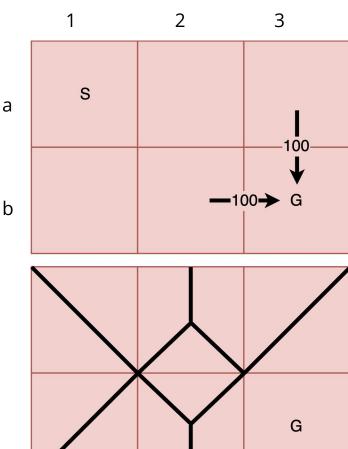
- Table that tells us the "quality" of an action at different states
- Q(s,a) -> cumulative discount reward of applying action a at stat s
- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Argmax(Q) -> policy
- Abstracts r(s,a) and T(s,a) into a table

- Table that tells us the "quality" of an action at different states
- Q(s,a) -> cumulative discount reward of applying action a at stat s
- Can learn Q', an approximation of the theoretical Q
- Imagine blackjack
- Argmax(Q) -> policy
- Abstracts r(s,a) and δ (s,a) into a table
- Let's see this in action

- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

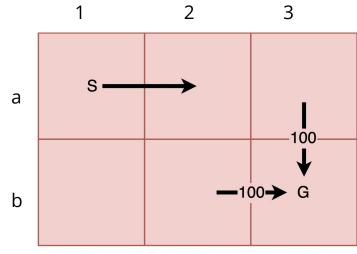
State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	0	0	0	0
b1	0	0	0	0
b2	0	0	0	0

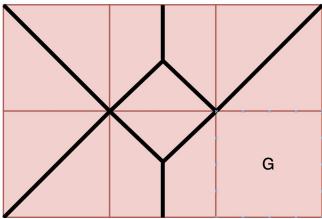


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	0	0	0	0
b1	0	0	0	0
b2	0	0	0	0

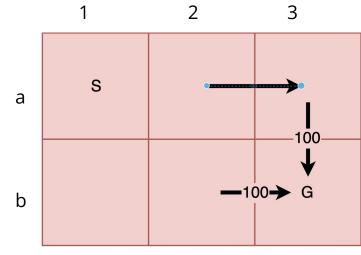


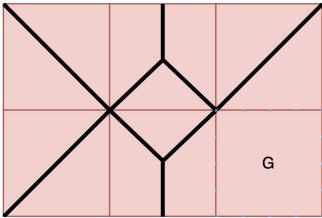


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
a3	0	0	0	0
b1	0	0	0	0
b2	0	0	0	0

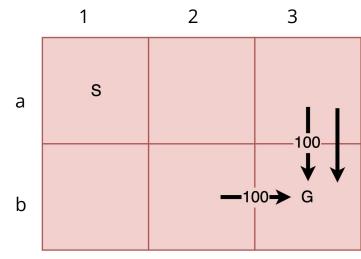


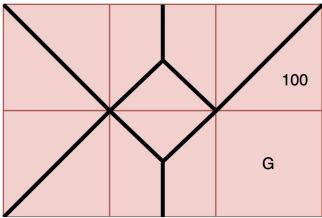


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0

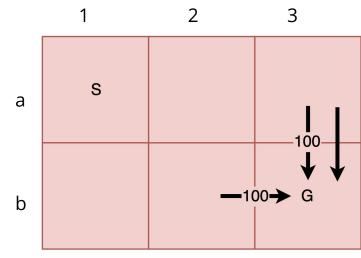


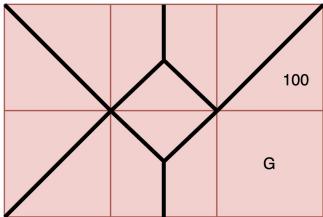


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0

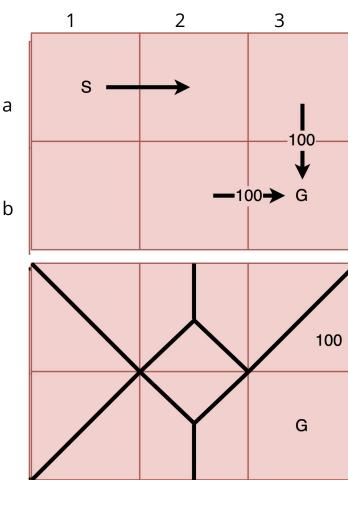




- $\gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

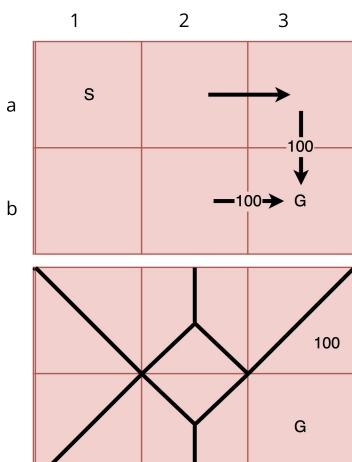
State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0



- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

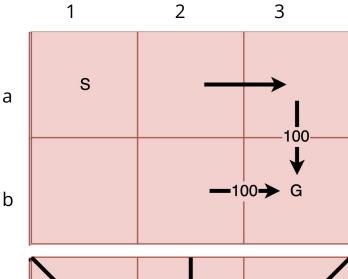
State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	0
а3	<mark>0</mark>	<mark>100</mark>	<mark>0</mark>	<mark>0</mark>
b1	0	0	0	0
b2	0	0	0	0

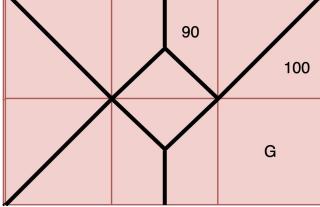


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	90
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0

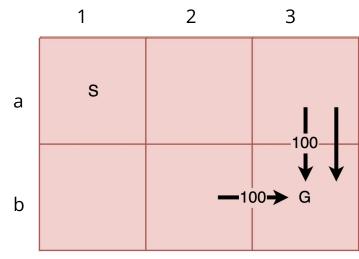


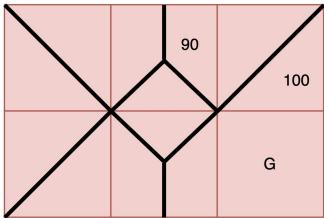


- $\bullet \quad \gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	0	0	0	90
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0

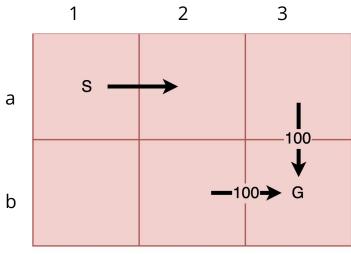


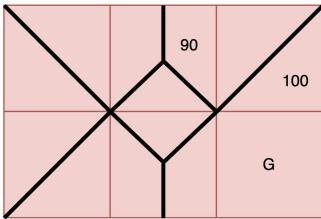


- $\gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	0
a2	<mark>0</mark>	<mark>0</mark>	O	<mark>90</mark>
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0

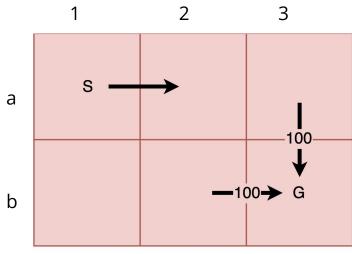


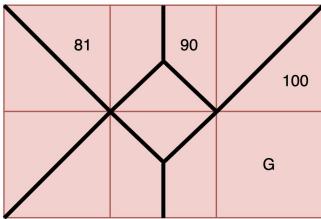


- $\gamma = 0.9$
- Algorithm:
 - Select action a
 - Transition s –a \rightarrow s'
 - Update Q-table

•
$$Q(s_t, a_t) = r_t + \gamma max(Q(s_{t+1}))$$

State	Up	Down	Left	Right
a1	0	0	0	81
a2	0	0	0	90
а3	0	100	0	0
b1	0	0	0	0
b2	0	0	0	0





Discussion: Efficiency Per Move

• What is the time complexity of building a minimax tree?

Discussion: Efficiency Per Move

- What is the time complexity of building a minimax tree?
 - \circ O(b^d), or as low as O(b^{d/2}) with best case alpha-beta pruning
- What is the time complexity of finding a move here?
 - Time complexity of argmax is O(n)
 - In our case O(b)!
 - Can precompute a policy table and have O(1) lookup at runtime!!

Discussion: Efficiency Per Move

- What is the time complexity of building a minimax tree?
 - \circ ~ O(b^d), or as low as O(b^{d/2}) with best case alpha-beta pruning
- What is the time complexity of finding a move here?
 - Time complexity of argmax is O(n)
 - In our case O(b)!
 - Can precompute a policy table and have O(1) lookup at runtime!!
- The catch: We need to do sufficient training

Markov Decision Process (MDP)

An MDP is a 5-tuple, $\langle S, A, R, P, \rho_0 \rangle$

S	set of valid states	
A	set of valid actions	
$R: S \times A \times S \to \mathbb{R}$	reward function	
$\begin{tabular}{ c c } P:S\times A\to \mathcal{P}(S) \end{tabular}$	transition probability function	P(s' s, a) is the probability of transitioning into state s' if you start in state s and take action a
$\rho_0:S\to\mathbb{R}$	initial state distribution	$\rho_0(s)$ is the probability of starting in state s

Terminology

A **state** is a complete description of the state of the world. There is no information about the world which is hidden from the state.

An **observation** is a partial description of a state, which may omit information.

When the agent is able to observe the complete state of the environment, we say that the environment is **fully observed**.

When the agent can only see a partial observation, we say that the environment is **partially observed**.

Terminology

Action space: set of valid actions in a given environment

Discrete action space: only a finite number of moves are available to the agent.

Continuous action space: In continuous spaces, actions are real-valued vectors.

Terminology

A trajectory τ is a sequence of states and actions in the world,

$$\tau = (s_0, a_0, s_1, a_1, \ldots)$$

The very first state of the world, s_0 , is randomly sampled from the start-state distribution, sometimes denoted by ρ_0 :

 $s_0{\sim}\rho_0(\cdot)$

Infinite-horizon discounted return

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t.$$

finite-horizon undiscounted return

$$R(\tau) = \sum_{t=0}^{T} r_t.$$