
Reinforcement Learning

Reinforcement Learning

Intelligence as Search
 Intelligence as Adversarial Search
 Intelligence as Function Approximation
 Intelligence as…

Reinforcement Learning

● Russell & Norvig Ch 17: Making Complex Decisions
● Russell & Norvig Ch 22: Reinforcement Learning
● OpenAI - Spinning Up: Key Concepts

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-conce
pts-and-terminology

● https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html A brief introduction to
reinforcement learning - Kevin Murphy

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#key-concepts-and-terminology
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html

Reinforcement Learning

Search:
Need good heuristics

Adversarial Search:
Need a good evaluation function

Machine Learning:
Need data examples to learn a good approximation

Reinforcement Learning

Search:
Developer writes heuristics

Adversarial Search:
Developer writes evaluation function

Machine Learning:
Developer collects data

Imperative specification for how to solve the
problem

Implicit specification via examples

Reinforcement Learning

Search:
Developer writes heuristics

Adversarial Search:
Developer writes evaluation function

Machine Learning:
Developer collects data

Reinforcement Learning:
Developer defines state space, actions, and reward function

Imperative specification for how to solve the
problem

Implicit specification via examples

Reinforcement Learning

Reward Function: Describes how “good” a state transition is

The reward function is an abstract definition of good behavior

Different from machine learning…
ML relies on concrete examples of good behavior

Different from search in Weeks 1 & 2…
Those approaches relied on specifications of how to do good behavior

Reinforcement Learning

RL involves an agent-environment interaction loop

Markov Decision Process (MDP)

Inverted Pendulum: A Case Study

Inverted Pendulum: A Case Study

● States?

Inverted Pendulum: A Case Study

● States?
○ Roller position
○ Pendulum angle

Inverted Pendulum: A Case Study

● States?
○ Roller position
○ Pendulum angle

● Actions?

Inverted Pendulum: A Case Study

● States?
○ Roller position
○ Pendulum angle

● Actions?
○ Left/right

Inverted Pendulum: A Case Study

● States?
○ Roller position
○ Pendulum angle

● Actions?
○ Left/right

● Rewards?

Inverted Pendulum: A Case Study

● States?
○ Roller position
○ Pendulum angle

● Actions?
○ Left/right

● Rewards?
○ Angle

States, Actions, Rewards

● States
○ How we represent the world

● Actions
○ What our agent can do in the state

● Rewards
○ “Praise” our agent when it does what we want, strengthen its policy
○ “Punish” our agent when it makes mistakes, tell it to change its policy

Video Games

Basketball??

http://www.youtube.com/watch?v=6157Wjyf0BA

Robots

What’s the “goal” of RL training?

There are algorithmic “goals” in supervised machine learning:

● Minimize our prediction error on observed data (during training)
● Minimize our prediction error on unseen data (generalization)

What’s the goal of RL?

● Learn a policy that maximizes expected cumulative discounted reward

Cumulative Reward

State 1 State 2

Agent Agent

State 3

reward 1 reward 2

State N

reward N-1

Agent

…

Episode

Agent

State
1

State
2

Agent Agent

State
3

reward 1 reward 2

State
N

reward N-1

Agent

…

Agent

State
1

State
2

Agent’ Agent’

State
3

reward 1 reward 2

State
N

reward N-1

Agent’

…

Agent’

Episode 1

Episode 2

Update the
agent

Cumulative Discounted Reward

Cumulative:
Consider future rewards

Discounted:
Immediate rewards might be better than later rewards

Cumulative Discounted Reward

Cumulative:
Consider future rewards

Discounted:
Immediate rewards might be better than later rewards

Cumulative Discounted Reward

Cumulative:
Consider future rewards

Discounted:
Immediate rewards might be better than later rewards

Reward Discounting

Discounted: Immediate rewards might be better than later rewards
● Each step discounted by a “discount factor” γ

● 0 ≥ γ ≤ 1, represents how “secure” we are in getting our reward

● In practice usually γ < 1

Discussion: Which Way Would You Go?

a b c

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?

a b c

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?

a b c

γ γ2

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?

a b c

γ γ

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?

a b c

γγ2

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?

a b c

γ γ2

Discussion: Which Way Would You Go?

● Assume determinism

● γ = 1

● γ = 0.1

● What γ would make both look equally good to a?
○ 1 = 0 + 5 * γ2

○ γ = 1/sqrt(5)

a b c

γ γ2

Infinite Rewards?

How far should we look ahead?

Limit the depth
Issues: Limits applicability, increases state space

Forever, but:
Keep γ < 1
Time penalty

Functions in RL

Utility (aka Value):

Quality

Reward Maximization

Blackjack

10

Blackjack

-------hit---->10

Blackjack

-------hit---->10 20

+0

Blackjack

-------hit---->10 -------stand---->20

+1

Blackjack

10 –hit→ +0, 20 –stand→ +1, <end>

● What did we learn?

Blackjack

10 –hit→ +0, 20 –stand→ +1, <end>

● What did we learn?
○ Standing on 20 good

Blackjack

10 –hit→ +0, 20 –stand→ +1, <end>

● What did we learn?
○ Standing on 20 good

■ +1
○ Hitting on 10 good

■ +1*γ=γ

Blackjack

10 –hit→ +0, 20 –stand→ +1, <end>

● What did we learn?
○ Standing on 20 good

■ +1
○ Hitting on 10 good

■ +1*γ=γ
● Issues?

Q Learning

● Learning a Q function that takes in a state and returns the rewards for
different actions

○ Q(s) = [ra0,ra1,ra2,...ran]
● Update Q function to reflect the cumulative discounted reward

○ Q(s,a) = rs,a+ γ*maxa’(Q(s’,a’))
● Take the action that will return the optimal value

○ A = argmaxa(Q(s,a)) State A0 A1 A2 A3

S0 rs0,A0 rs0,A1 rs0,A2 rs0,A3

S1 rs1,A0 rs1,A1 rs1,A2 rs1,A3

S2 rs2,A0 rs2,A1 rs2,A2 rs2,A3

The Q-Table

● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack

State (sum total of
cards)

stand hit

2 0 0

3 0 0

… 0 0

21 0 0

The Q-Table

● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

State (sum total of
cards)

stand hit

2 0 0

3 0 0

… 0 0

21 0 0

The Q-Table

● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

State (sum total of
cards)

stand hit

2 -1 -0.745432

3 -0.9997 0.6532

… … …

21 1 -1

The Q-Table

● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Argmax(Q) -> policy State (sum total of
cards)

Action

2 hit

3 hit

… …

21 stand

The Q-Table

● Table that tells us the “quality” of an action at different states
● Q(s,a) -> cumulative discount reward of applying action a at stat s
● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Argmax(Q) -> policy

State (sum total of
cards)

Action

2 hit

3 hit

… …

21 stand

The Q-Table

● Table that tells us the “quality” of an action at different states
● Q(s,a) -> cumulative discount reward of applying action a at stat s
● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Argmax(Q) -> policy
● Abstracts r(s,a) and T(s,a) into a table

The Q-Table

● Table that tells us the “quality” of an action at different states
● Q(s,a) -> cumulative discount reward of applying action a at stat s
● Can learn Q’, an approximation of the theoretical Q
● Imagine blackjack
● Argmax(Q) -> policy
● Abstracts r(s,a) and 𝛿(s,a) into a table
● Let’s see this in action

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 0 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 0 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 0 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 0

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 90

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 90

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 0

a2 0 0 0 90

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Building a Q-Table: Gridworld

● γ = 0.9
● Algorithm:

○ Select action a
○ Transition s –a→s’
○ Update Q-table

● Q(st, at) = rt + γmax(Q(st+1))

a

b

1 2 3

State Up Down Left Right

a1 0 0 0 81

a2 0 0 0 90

a3 0 100 0 0

b1 0 0 0 0

b2 0 0 0 0

Discussion: Efficiency Per Move

● What is the time complexity of building a minimax tree?

Discussion: Efficiency Per Move

● What is the time complexity of building a minimax tree?
○ O(bd), or as low as O(bd/2) with best case alpha-beta pruning

● What is the time complexity of finding a move here?
○ Time complexity of argmax is O(n)

■ In our case O(b)!
○ Can precompute a policy table and have O(1) lookup at runtime!!

Discussion: Efficiency Per Move

● What is the time complexity of building a minimax tree?
○ O(bd), or as low as O(bd/2) with best case alpha-beta pruning

● What is the time complexity of finding a move here?
○ Time complexity of argmax is O(n)

■ In our case O(b)!
○ Can precompute a policy table and have O(1) lookup at runtime!!

● The catch: We need to do sufficient training

Markov Decision Process (MDP)

Terminology

A state is a complete description of the state of the world. There is no information
about the world which is hidden from the state.

An observation is a partial description of a state, which may omit information.

When the agent is able to observe the complete state of the environment, we say that
the environment is fully observed.

When the agent can only see a partial observation, we say that the environment is
partially observed.

Terminology

Action space: set of valid actions in a given environment

Discrete action space: only a finite number of moves are available to the agent.

Continuous action space: In continuous spaces, actions are real-valued vectors.

Terminology

finite-horizon undiscounted returnInfinite-horizon discounted return

