Machine Learning with
Decision Trees

ECS 170

University of California, Davis
Gabriel Simmons

(adapted from slides by Michael Livanos)

Approaches to Intelligence
Intelligence as search through a state space
We're intelligent if we can navigate to goal states efficiently

Intelligence as game-playing

We’re intelligent if we can navigate to goal states efficiently...

...In adversarial environments

Approaches to Intelligence

Intelligence as...

Function Approximation:
We're intelligent if we can replicate a data-generating process, based on

observations of its outputs

Discovering Structure:
We're intelligent if we can find a “simple explanation” for
seemingly-complex phenomena

Prediction:
We’re intelligent if we can say something true beyond what’s obvious

from direct observation

Approaches to Intelligence

Intelligence as...

Function Approximation:
We're intelligent if we can replicate a data-generating process, based on

observations of its outputs

Discovering Structure:
We're intelligent if we can find a “simple explanation” for
seemingly-complex phenomena

Prediction:
We’'re intelligent if we can say something true beyond what’s obvious

from direct observation

Machine Learning

Goal: develop a model of some process based on data

Machine Learning

Goal: develop a model of some process based on observations of the
process

observations == data

Types of Machine Learning

Supervised
ML

have labels

ML

Unsupervised
ML

no labels

Reinforcement
Learning

have a
function that
“labels”
world states

Types of Machine Learning

Supervised
ML

have labels

ML

Unsupervised
ML

no labels

Reinforcement
Learning

have a
function that
“labels”
world states

Fast Forward

B &
g a
_.4. - ECS 170 is just a faint memory

)¢ ﬂf\ Q

your friends and family have waited for three hours to see you walk

it’s the afternoon of your graduation

(you forgot to shake the Chancellor’s hand, but it’s ok)

now your friends and
family are hungry...

Fast Forward

you take everyone to your favorite restaurant in Davis

... but there’s a line

... do you wait?

... do you wait?

... do you wait?

Figure 19.3

Patrons?

Alternate?

e N

| Reservation? || Fri/Sat? |
No Yes

A decision tree for deciding whether to wait for a table.

The Decision Tree
A Simple Supervised Machine Learning Model

map a vector of attribute values (inputs) to a single value (output)

“attribute values” == “features”

Input Attributes Output
Example

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X| Yes No No Yes Some $$8 No Yes French 0-10 y, = Yes
X2 Yes No No Yes Full $ No No Thai 30-60 y» = No
X3 No Yes No No Some $ No No Burger 0-10 y3=Yes
X4 Yes . No Yes Yes Full $ Yes No Thai 10-30 ys = Yes
X5 Yes No Yes No Full $$8 No Yes French >60 ys= No
X6 No Yes No Yes Some $$ Yes Yes ltalian 0-10 ye= Yes
X7 No Yes No No None $ Yes No Burger 0-10 y;=No
Xs No No No Yes Some $$ Yes Yes Thai 0-10 ys=Yes
X9 No Yes Yes No Full $ Yes No Burger >060 y9 = No
X10 Yes Yes Yes Yes Full $8% No Yes Iulian 10-30 y;o = No
X1 No No No No None $ No No Thai 0-10 y;) =No
X12 Yes Yes Yes Yes Full $ No No Burger 30-60 y),= Yes

Figure 19.3

Patrons?

Output class x1? x2?

Input Attributes

Example
Alt Bar Fri Hun Pat Price Rain Res Type Est
Alternate?

X Yes No No Yes Some $3% No Yes French 0-10
Xo Yese No No Yes Full 3 No No Thai 30-60
X3 No Yes No No Some $ No No Burger 0-10
X4 Yess No Yes Yes Full $ Yes No Thai 10-30
. e T T 0 BE A N o M i | Reservation? || Fri/Sat? | | Alternate? |
X6 No Yes No Yes Some $$ Yes Yes Ialian 0-10 No Yes No Yes
X7 No Yes No No None $ Yes No Burger 0-10
Xg No No No Yes Some $$ Yes Yes Thai 0-10 —
X9 No Yes Yes No Full $ Yes No Burger >60
X10 Yes Yes Yes Yes Full $38 No Yes Iwalian 10-30
X1 No No No No None $ No No Thai 0-10
X12 Yes Yes Yes Yes Full $ No No Burger 30-60

A decision tree for deciding whether to wait for a table.

Input Attributes Output
Example

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X| Yes No No Yes Some $885 No Yes French 0-10 y, = Yes
X2 Yes No No Yes Full $ No No Thai 30-60 y» = No
X3 No Yes No No Some $ No No Burger 0-10 y3= Yes
X4 Yes No Yes Yes Full $ Yes No Thai 10-30 ys4=Yes
X5 Yes No Yes No Full $8% No Yes French >60 ys= No
X6 No Yes No Yes Some $8 Yes Yes Italian 0-10 y¢= Yes
X7 No Yes No No None $ Yes No Burger 0-10 y; = No
X3 No No No Yes Some 88 Yes Yes Thai 0-10 yg = Yes
X9 No Yes Yes No Full $ Yes No Burger >60 y9= No
X10 Yes Yes Yes Yes Full $$$8 No Yes Italian 10-30 y,o = No
X1 No No No No None $ No No Thai 0-10 y;, =No
X|2 Yes Yes Yes Yes Full $ No No Burger 30-60 vy, = Yes

Machine Learning

Goal: develop a model of some process based on observations of the
process

Can we model whether potential customers will wait for a seat or not?

Decision Tree: Core Idea

Select an “informative” feature
Split the data based on feature values

Repeat until the data is separated by output label

What feature should we use?

HBEEHOAE

BHEHEODIE

After splitting on Type, our best guess is still 50/50

What feature should we use?

i1l OB IE
HEHHEBI
If we split on Patrons, we can Patrons?
be more confident
None Some Full
When there are some patrons, HE06EH
people always wait il HHE D
o gy
When there are no patrons,
people never wait No/\(es
Informative features partition BEARE A

the data into homogeneous
subsets

Decision Tree Algorithm

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if artributes is empty then return PLURALITY-VALUE(examples)
else
A < argmax, ¢ ariburess IMPORTANCE (a, examples)
tree <—a new decision tree with root test A
for each value v of A do
exs«{e : ecexamples and e.A = v}
subtree +— LEARN-DECISION-TREE(exs, attributes — A, examples)
add a branch to rree with label (A = v) and subtree subtree
return free

The decision tree learning algorithm. The function IMPORTANCE is described in Section 19.3.3E. The
function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties
randomly.

What to do with leaf nodes?

Predict No

\

‘EEIE\
BEHEHEOIIIE

Patrons?
None Some
68

Predict Yes

Full

BHOID

Hungry?

Predict No
100% of the time

Select yes or no by
chance,

Predict that 100% of
the time

Decision Tree Algorithm

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if artributes is empty then return PLURALITY-VALUE(examples)
else
A < argmax, ¢ ariburess IMPORTANCE (a, examples)
tree <—a new decision tree with root test A
for each value v of A do
exs«{e : ecexamples and e.A = v}
subtree +— LEARN-DECISION-TREE(exs, attributes — A, examples)
add a branch to rree with label (A = v) and subtree subtree
return free

The decision tree learning algorithm. The function IMPORTANCE is described in Section 19.3.3E. The
function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties
randomly.

Determining Feature Importance

Entropy: H(V) = Z P(vg) log, ﬁ = — Z P(vy) log, P(uvg).
k k

entropy is a measure of uncertainty about a random variable v,

more certainty == less entropy

more informative features help us become more certain (decrease entropy)

Determining Feature Importance

It will help to define B(q) as the entropy of a Boolean random variable that is true with
probability g¢:

B(q) = —(qlogy g+ (1 — q) logy(1 — q)).

p
H(Output) = B
(Output) = B(-2

Determining Feature Importance

An attribute A with d distinct values divides the training set E into subsets Fj, ..., E;. Each
subset Ej has p; positive examples and n; negative examples, so if we go along that branch,
we will need an additional B(py/ (px + nx)) bits of information to answer the question. A

randomly chosen example from the training set has the kth value for the attribute (i.e., is in

E}, with probability (pi + ny)/(p + n)), so the expected entropy remaining after testing
attribute A is

d
E+ N
Remainde’r E Pk _ry b (P)
n

Determining Feature Importance

An attribute A with d distinct values divides the training set E into subsets Fj, ..., E;. Each
subset Ej has p; positive examples and n; negative examples, so if we go along that branch,
we will need an additional B(py/ (px + nx)) bits of information to answer the question. A

randomly chosen example from the training set has the kth value for the attribute (i.e., is in

E}, with probability (pi + ny)/(p + n)), so the expected entropy remaining after testing
attribute A is

d
E+ N
Remainde’r E Pk _ry b (P)
n

The information gain from the attribute test on A is the expected reduction in entropy:

p
D11

Gain(A) = B() — Remainder(A).

Information gain

In fact Gain(A) is just what we need to implement the ImporTANCE function. Returning to the

attributes considered in Figure 19.415, we have

Gain(Patrons) =1 — | =B (%) +24B (%) +3iB (%) ~ 0.541 bits,

|
) +4B(2)] =ovis,

2
Gain(Type) =1 — [lB (%

Decision Tree Algorithm

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if artributes is empty then return PLURALITY-VALUE(examples)
else
A < argmax, ¢ ariburess IMPORTANCE (a, examples)
tree <—a new decision tree with root test A
for each value v of A do
exs«{e : ecexamples and e.A = v}
subtree +— LEARN-DECISION-TREE(exs, attributes — A, examples)
add a branch to rree with label (A = v) and subtree subtree
return free

The decision tree learning algorithm. The function IMPORTANCE is described in Section 19.3.3E. The
function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties
randomly.

Decision Tree Algorithm

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if artributes is empty then return PLURALITY-VALUE(examples)
else
A < argmax, ¢ ariburess IMPORTANCE (a, examples)
tree <—a new decision tree with root test A
for each value v of A do
exs«{e : ecexamples and e.A = v}
subtree +— LEARN-DECISION-TREE(exs, attributes — A, examples)
add a branch to rree with label (A = v) and subtree subtree
return free

The decision tree learning algorithm. The function IMPORTANCE is described in Section 19.3.3E. The
function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties
randomly.

Overfitting I weo | il

x T

Figure 1.4 Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in
Figure 1.2.

From Christopher Bishop’s Pattern Recognition and Machine Learning (Ch 1)

Pavlov’s Dogs

1. Before conditioning

R
e response
Food Salivation
Unconditioned Unconditioned
stimulus response

2. Before conditioning

......... -
response
Tuning fork
Neutral
stimulus

Mo salivation

No conditioned
response

3. During conditioning

lf [
+ &

Food Salivation

.............. -
response

Tuning

fork Unconditioned

response

4, After conditioning

.55
EENCE ™S
response

Tuning fork

Conditioned
stimulus

Salivation

Conditioned
response

Pavlov’s Dogs

Intelligent?

Overfitting

We’re attempting to model a data-generating process...

... but we only have a finite number of observations.

some correlations in our dataset are reliable...

other correlations are spurious.

Overfitting

We want to learn the signal - the true relationships between variables

And ignore the noise - relationships that only appear in our data by
coincidence

Overfitting

Well Fit Decision Tree

o
® o o o
O ®@ O o
~ (@] e} O
:..g Ist split 2nd split O
o ®) O o ®) 3rd split
O
O O @)
Feature 1
Overfit Decision Tree
5 5th sz||‘|’ . ‘ . .
@] @) O [« Hthsplit @]
~ @ Gthsplit—7 o (@] [&]
g Ist split 2nd split o
- 3rd split
O . O O
Feature 1

https://towardsdatascience.com/decision-trees-60707f{06e836

Preventing Overfitting — Regularization

Regularization techniques combat overfitting

What does it mean to be regular?

You’re never going to
get into Johns
Hopkins like this...

I’m gonna play video
games for a living

Regularization Methods

Regularization often comes in the form of a penalty on model complexity

Pclass <=2.5
gini =0.383
samples =314
value = [81, 233]
(class = Survived

https://towardsdatascience.com/an-

introduction-to-decision-trees-with-p e owardsa noto/ - decision it el |
ython'and'SCikit'Iearn'1 a5ba6f0204 _fe257673\g/gg5%al.ne p/programming/decision-trees-explainea-with-a-practical-example

f

Regularization for Decision Trees -
Chi-Squared Pruning

Key Idea: remove decisions that only lead to small information gain

How much information gain do we need to keep the split?

Test for statistical significance

Hypothesis Testing:

Null Hypothesis: feature is uninformative, information gain is zero

Proportion in nodes
after splitting is the
same as before

No information gain

Hypothesis Testing:

Null Hypothesis: feature is uninformative, information gain is zero

Proportion in nodes after DEDBBE
splitting is different, more ‘E BHE T X
homogeneous Patrons?

None Some Full

Higher information gain 6l 8]

m Yes Hungry?

No Yes

Tt

Hypothesis Testing:

Null Distribution: Construct a distribution of the outcomes we would see by chance for
uninformative features

Most of the time,
information gain is
low

A chi-squared distribution

Sometimes we get a
B large information gain
from uninformative
features...

but it’s rare

X2 value

Hypothesis Testing:

Null Distribution: Construct a distribution of the outcomes we would see by chance for
uninformative features
Set a threshold 1 on the

information gain Area = 0.05

A chi-squared distribution

If we see an information
gain larger than t...

there’s only a 5% chance
it’s spurious

X2 value

Regularization for Decision Trees -
Chi-Squared Pruning

Step 1: Fit the tree until all the leaf nodes are homogeneous

Step 2: For each split, check whether it significantly reduces our prediction
uncertainty using chi2 test, remove if not

Pruning vs. Early Stopping

Why fit the whole tree first?
Boolean Math: XOR (6D)

XY
0

Why not just check information gain
along the way?

- = O O M
- O = O

1
1
0

Sometimes features are only
informative in combination

Our goal in machine learning is to select a hypothesis that will optimally fit future examples.

To make that precise we need to define “future example” and “optimal fit.”

First we will make the assumption that the future examples will be like the past. We call this
the stationarity assumption; without it, all bets are off. We assume that each example E; has

the same prior probability distribution:

P (E;) =P (Ej1) =P (Eji2) = -+,

Stationarity

and is independent of the previous examples:
P (E;) =P (Ej|Ej-1, Ej-2,...).

Examples that satisfy these equations are independent and identically distributed or i.i.d..

Ii.d

Selecting Models

Assume that the data distribution is stationary and samples are independent ->
[ID assumption

Define the “best model” to be the model that minimizes error rate on future
unseen data

Error rate says how often our prediction does not match the truth

Estimate the error rate by testing our model on a set of examples not seen
during training - the “test set”

Hyperparameters

If we are only going to create one hypothesis, then this approach is sufficient. But often we
will end up creating multiple hypotheses: we might want to compare two completely
different machine learning models, or we might want to adjust the various “knobs” within
one model. For example, we could try different thresholds for x* pruning of decision trees,

or different degrees for polynomials. We call these “knobs” hyperparameters—parameters

of the model class, not of the individual model.

Hyperparameters

Selecting Models

Assume that the data distribution is stationary and samples are independent ->
[ID assumption

Define the “best model” to be the model that minimizes error rate on future
unseen data

Error rate says how often our prediction does not match the truth

Estimate the error rate by testing our model on a set of examples not seen
during training or hyperparameter tuning - the “test set”

Splitting the Data

Split the data into train and test

For development, split train
further into train and validation

When the train dataset is small,
perform validation multiple times

(cross-validation)

Train

Model Selection and Optimization

In Figure 19.11Z (page 654) we saw a linear function underfit the data set, and a high-degree
polynomial overfit the data. We can think of the task of finding a good hypothesis as two
subtasks: model selection* chooses a good hypothesis space, and optimization (also called

training) finds the best hypothesis within that space.

4 Although the name “model selection” is in common use, a better name would have been “model class selection” or “hypothesis space
selection.” The word “model” has been used in the literature to refer to three different levels of specificity: a broad hypothesis space
(like “polynomials”), a hypothesis space with hyperparameters filled in (like “degree-2 polynomials”), and a specific hypothesis with all
parameters filled in (like 522 + 3z — 2).

