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MOCO Amsterdam garden

L10: Probabilistic 
methods 



Midterm on tuesday.

How similar is to the practice?

Topic similarity 

             Lectures 1-9 fair game
Recommended study plan
             Do practice exam
             Patch any holes exposed by practice exam
             Go through lectures 1-9 & write similar style questions
             Answer your self-written study guide
             

Similarity in the style of questioning
           ~ dozen short answer - MC, TF, write a couple sentences, do a short calculation
           ~ 3-4 calculation problems - 

Activity 2 due Monday



Intended Learning Outcomes 

- Know and apply concepts of Bayesian probability
- Appreciate the connection between generative and discriminative classification
-  For a simple regression case, appreciate how we fit a normal distribution using the likelihood

- Insert numbers to compute the different model candidates 



Bayesian Probability

- Bayes Theorem is a method to determine conditional probabilities 
- The probability of one event occurring given that another 

event has already occurred. 
- Because a conditional probability includes additional conditions 

i.e. more data – it can contribute to more accurate results. 

 

Thomas Bayes 
(1701-1761, UK)

Bayes was a 
minister

He never 
published his 
theorem 



Bayes theorem

If our data (input vector), and our outcome (e.g. labels) is A

Conditional or posterior Probability: P(𝜃 |data) 
Probability of one (or more) event given the occurrence of another 

event, e.g. P(𝜃 given data) or P(𝜃 | data).

Likelihood: P(data|𝜃)

Marginal Probability or Prior: P(𝜃)
The probability of an event irrespective of the outcomes of other random 
variables

‘Evidence’:  P(data)
What actually occurred

Joint Probability: P(𝜃, data) also written P(𝜃 and data)

Probability of two (or more) simultaneous events 









Recap: Statistics to Describe the Distribution of Data

- The Mean is the average of the data
- The Median is the value in the middle of the 

dataset (50% of the values smaller/larger or 
equal)

- The Standard Deviation (σ, square root of 
variance) measures the dispersion of data 
relative to its mean

- Skewness is a measure of the symmetry
- Kurtosis is the shape (tall, flat etc)
- Note: If a normal distribution is our ‘model’, we 

only need the mean and standard deviation to 
describe it



The equation describing a normal distribution

Note: If a normal distribution is our ‘model’ we only need the mean and 
standard deviation to describe it!



We can treat classification in ‘probabilistic’ terms



Discriminative Classifiers: Direct mappings

- Learn mappings directly from the 
space of inputs X to class labels 
{0,1,2,...,K}

- For example:
- Linear regression (as a 

classifier)
- Neural Networks

Note ‘Discriminative’ defined as: 
making distinctions with accuracy



- For example:
- Logistic regression

Discriminative Classifiers: Learn p(y|x) directly



- Build a model of how data for a 
class ‘looks like’

- Generative classifiers try to model 
p(x|y)

- Classification via Bayes rule
- Called Bayes Classifiers

Generative Classifiers



Approaches to classification: Generative vs Discriminative

- Discriminative classifiers estimate parameters of decision boundary/class separator directly 
from labeled examples

- Learn p(y |x) directly (logistic regression models)
- Learn mappings from inputs to classes (least-squares, neural nets)

- Generative approach: model the distribution of inputs characteristic of the class (Bayes 
classifier)

- Build a model of p(x|y)
- Apply Bayes Rule



Bayes Classifier

- Aim to diagnose whether patient has diabetes: 
- Classify into one of two classes (yes C=1; no C=0)
- Run a number of tests (d) on subjects, get x for each patient

- Compute class given a patient’s result: x = [x
1 

, x
2
, …, x

d
]T 

- Use Bayes Rule:

- Put differently: 
- How can we compute p(x) for the two class case?

- To compute p(C|x) we still need: p(x|C ) and p(C)

...but let’s do a simple regression analysis first for building intuition…



Recall L4: We can use the maximum likelihood estimation 

- To determine the function that maximises the likelihood of having a good model use the 
method: Maximum likelihood estimation (MLE)

- First: We must choose a probability distribution we believe is a good fit
- Normal distribution is a good place to start



Recall L4: We can use the maximum likelihood estimation 

- To determine the function that maximises the likelihood of having a good model use the 
method: Maximum likelihood estimation (MLE)

- First: We must choose a probability distribution p(x|C) we believe is a good fit
- Normal distribution is a good place to start



Maximum Likelihood Estimation

- Fitting a model to a 
series of mouse 
weights

- Let’s try a normal 
distribution



Maximum Likelihood Estimation



Maximum Likelihood Estimation

The average mouse weight

Most of the mice 
weight close to 
the average



Maximum Likelihood Estimation

Once shape is determined, we must determine 
the optimal location that maximises the 
probability of being similar to the observations



Maximum Likelihood Estimation

Most of the measured values 
should be near the average



Location maximises 
the likelihood of 
observing the mean of 
the measured data
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Now we need the ‘maximum 
likelihood’ of the standard 
deviation

Maximum Likelihood Estimation



Location maximises 
the likelihood of 
observing the standard 
deviation of the 
measured data
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Maximum Likelihood Estimation



Maximum Likelihood Estimation

We now have the function: 

And we want to estimate what a given sample would result in varying the mean and standard 
deviation:



Maximum Likelihood Estimation

Given samples (blue dots), some mean and standard deviation, insert the data

Determine the likelihood of the entire dataset



Fitting a Normal Distribution fit

1. Start with a statistical model 
a. such as a normal distribution—the parameters would be μ and σ

2. Construct the likelihood function

3. Maximize the Likelihood function

4. Find the estimates

Recall: We are using a simple linear regression example (should be familiar)

Linear regression model parameters can be estimated using negative log likelihood 
function from MLE. 

The negative log likelihood function can now be used to derive the least squares 
solution



Maximum Likelihood Estimation

Goal: Find the best fit where the likelihood of θ given the measurements is maximum.



Converting Linear Regression to a Probability Density Function (pdf)

Given a fixed, non-random sample X
1 

, X
2
,...,X

n
 find the best distribution that fits Y

1
, Y

2
,...,Y

n

using a normal distribution, where a linear regression function is of the form:

For a fixed sample X
i 
the distribution of Y

i
 is equal to:

Recall, for our normal distribution we have have:



Converting Linear Regression to a Probability Density Function (pdf)

Recall, for our normal distribution we have have:

Setting the mean to zero (μ = 0) we have:



Using the likelihood function

Here, 𝜃 is our unknown parameter of L(𝜃)

We now have the different X
1
, X2

,
..,X

n 
arriving at:

Which we now write as the Negative Log Likelihood:



We can now look for the maximum/minimum

Using methods of maximization we can find the optimal value

Which with the minus sign becomes a maximisation for the Negative Log Likelihood 



MLE continued

Recall, as the likelihood is usually a very small value, we take the negative log:

Arriving at the Negative Log Likelihood (NNL) we can carry along what we saw in 



MLE continued

Negative Log Likelihood (NLL)

Residual Sum of Squares (RSS)


