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Intended Learning Outcomes

Understand the concept and calculate components of Bayes Theorem
- Conditional, Marginal, Joint etc
- Be able to apply the chain rule
Describe how Directed Acyclic Graphs are used for a Bayes Network and how this differs
from the Networks dealt with previously
- Understand and apply the concept of probabilities in Networks
Describe the distinction between Naive Bayes and a Bayesian network
- Including concepts like conditional independence
Calculate the Discriminant function in the context of a simple Naive Baye network



Probabilistic Graphical Models (PGM): Bayes Network

- Aka Belief Network and Decision Network

- In a nutshell: A network representing probabilistic dependencies
between variables
- The connections/dependencies can be described as a ‘graph’
- Flexible models capable of capturing complex relationships

- Applications include:
- Diagnostics, reasoning, causal modeling, decision making under
uncertainty, anomaly detection, natural language processing https:igoo.glimages/GawuzF

- We will cover a simple Bayesian Network is called “Naive Bayes” with a
simpler structure and much stronger assumptions about the
independence of features.



Bayes theorem recap

If our data (input vector), and our outcome (e.g. labels) is A

Conditional or posterior Probability: P(0 |data)
Probability of one (or more) event given the occurrence of another

event, e.g. P(6 given data) or P(0 | data).
Likelihood: P(datal0)

Marginal Probability or Prior: P(Q)
The probability of an event irrespective of the outcomes of other random
variables

‘Evidence’: P(data)
What actually occurred

Joint Probability: P(6, data) also written P(0 and data)
Probability of two (or more) simultaneous events

p(0 | data) =

Posterior Beliefs

Evidence

Prior Beliefs

Likelihood Prior

Posterior \ /

p(data | 0) - p(6)
p(data)

Normalization



Recap Conditional Probability: P(0|data)

- Conditional probability is a measure of the likelihood of an event occurring, given that another
event (or set of events) has already occurred: P(A|B) = P(A,B) / P(B)

- Example:

- What is the probability of a randomly selected person is a student (A) given that they
own a pet (B)?

- P(A=Student|B=True) = P(A=Student,B=True)/ P(B=True) = .41/ (.45+.41) = .41/ .86 =
A77 or47.7%

B = pet

True False Total

g No |0.45 0.06 0.51
©
=
n

1 Yes | 0.41 0.08 0.49
<

Total | 0.86 0.14 1.0




Recap Marginal Probability : P(data)

- The probability of a single event or variable without considering the effects of any other

events or variables

- The marginal probability of an event A can be calculated by summing the joint probabilities of

A occurring with all possible outcomes of another event B

- Example:

- What is the probability that a card drawn from a pile of cards is “blue”.
-  P(A=blue) = YP(A, B) = P(A=Blue, B=1) + P(A=Blue. B=2) =.06+ .04 =.1 or 10%

A = color

<

Red Green Blue Total
1 0.12 0.42 0.06 0.6
B = value
2 0.08 0.28 0.04 0.4
Total | 0.2 0.7 0.1 1.0




Recap Joint Probability: P(0, data) or P(6 and data)

- IfAand B are two events, P(A,B) represents the probability of A and B occurring
simultaneously

- Independent:
- Occurrence of one event does not affect the probability of the other event: P(A)*P(B)

- Dependent:
- Occurrence of one does affect the probability of the other event: P(A,B) = P(A|B) * P(B)

- Symmetric: P(A,B) = P(B,A) = P(B|A) * P(A)

- Example:
- The joint probability that it rains (A) and the sky is cloudy (B), P(A,B)
- If P(A=rain | B=cloudy) = 1/13 , P(B= cloudy) = 12 then, P(A,B) = 1/13 x 1/2 = 1/26



Recap Chain Rule in probability

For events Aq,..., A, whose intersection has not probability zero, the chain rule states

P(Ai1NA:nN...NA,)=P(A, |A1N...NA4,1)P(A1N...NA,1)

=PA, |A1N...NA, )P4, 1 |AiN...NA, 2)P(A1N...N A, )

P(A, |AiN...NA1)P(Ap1 |A1N...NAp o) ...-P(A3 | Ay N A)P(Ay | A1)P(A)
P

(A1)P(As | A1)P(As | A1 N As) ... - P(Ay | A1 O N Ans)

For n = 4, i.e. four events, the chain rule reads

P(AyNA;NA3NAy) =P(Ag | AN Ay N A)P(A3 N A N Ay)
P(Ay | AsNAs N A)P(As | Ay N A )P(As N Ay)
P(Ay | AsN Ay N A))P(As | Ay N A)P(Ay | Ap)P(A,)



Bayesian Networks: Probabilistic Graphical Models

A ‘graph’ in the context of Networks is a mathematical
structure used to model pairwise relations between
objects
- Graphs consist of vertices and edges, where
edges (aka links) connect vertices (aka nodes)

The directed edges in the graph indicates the flow of
information and the dependencies between variables

For a Bayes Network, we use a ‘Directed Acyclic
Graph’ to represents the probabilistic dependencies
among a set of variables

nodes (or vertices)

\

edges
(or links)
Sal




- Adirected graph with no cycles

- A Directed Acyclic Graph G can be thought of as a compact
representation of a joint probability distribution over n variables X,
X, Xgpeoey X

n

<.
Bayesian Networks as Directed Acyclic Graphs
o QD
<

Pl 0 X, Mg 0 11 Ko} = P | Fpl Hog e LK) PR | K 01 1 K = e« P | )P

They are a generalization of random processes that depend on each other:
- Example 1: rainy weather pattern: Dark clouds increase the
probability of raining later the same day
- Example 2: The probability of detecting a malware is influenced by
the values of internal CPU events in a microprocessor



Bayesian Networks as Directed Acyclic Graphs

- Vertices : Variables Unconditional probability
- Edges: A conditional probability e
- An edge from y to x represents P(x|y)

- For vertex X, the conditional probability is:

P 3606, s )

-  Recall:

“~. Conditional probability

n
P(xi, %5, ) Xp) = 1_[ P(x;|Parents(x;))
i=1

- The joint distribution contains the information we need to
compute the probability of interest using Bayesian Networks



The advantages of Bayesian Networks

- Offers a more nuanced model of a system, particularly important with imperfect data
- Interoperable and visual structure

- Answer probabilistic queries and compute Inference
- Example: “What is the probability of an email being SPAM if it has the words “provide
your credit card information”?



Probabilities: Spam filter examp

- Given training data (right), determine the
conditional probability of seeing ‘Hello’ in a
‘normal’ message

- The probabilities of discrete individual words
(not a continuous property) and can be
called ‘Likelihood’

e

1:[ [‘Hello’: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘normal’]
2: [ [‘Hello’: 1, “call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘normal’]
3:[[‘Hello’: 0, ‘call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0], label: ‘normal’]
4:[ [‘Hello’: 0, ‘call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
5:[ [‘Hello’: 1, ‘call’: 0, ‘credit’:0, ‘card’: 0, ‘number’: 1] , label: ‘normal’]
6: [ [‘Hello’: 1, “call’: 0, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
7:[ [‘Hello’: 1, “call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
8:[[‘Hello’: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘normal’]
9:[[‘Hello’: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
10: [[‘Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
11:[[‘Hello’: 0, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
12:[[‘Hello’: 0, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘SPAM’]

Number of times ‘Hello’ is seen in a ‘normal’ message 8

P(Hello | normal) =

Total number of words in the ‘normal’ messages 20



,‘call’: 1, ‘credit’:1, ‘card”: 1, ‘number’: 1], label: ‘normal’]

Spam filter example: ‘normal’

2:[[‘Hello’: 1, “call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘normal’]

1 1

1 [
3:[[‘Hello”: 0, “call’: 1, ‘credit”:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
4:[ ['Hello”: 0, “call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
5:[[‘Hello”: 1, ‘call’: 0, ‘credit”:0, ‘card’: 0, ‘number’: 1] , label: ‘normal’]
6: [ [‘Hello”: 1, ‘call’: 0, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
7:[[‘Hello’: 1, ‘call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]

1

8:[ [‘Hello”: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘normal’]

9:[[Hello”: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]

10: [ [*Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM’]
11:[[Hello”: 0, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM’]
12:[[Hello”: 0, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘SPAM’]

Probability of seeing a word in a normal message
8
20 number

P(call | normal) = =925 card

credit

3
P(card | normal) = 20 = O el

Hello

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%



,‘call’: 1, ‘credit’:1, ‘card”: 1, ‘number’: 1], label: ‘normal’]

Spam filter example: ‘SPAM’

1 1

2:[[‘Hello™: 1, ‘call’: 0, ‘credit’:1, ‘card”: 1, ‘number’: 0] , label: ‘normal’]
3:[[‘Hello”: 0, “call’: 1, ‘credit”:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
4:[[‘Hello”: 0, “call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
5:[ [‘Hello”: 1 0, ‘credit’:0, ‘card’: 0, ‘number’: 1] , label: ‘normal’]
6:[[‘Hello”: 1 [

7:[[‘Hello”: 1 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
8:[ [‘Hello”: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘normal’]
9:[[Hello”: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
10: [ [*Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM’]
11:[[Hello”: 0, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM’]
12:[[Hello”: 0, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘SPAM’]

, fcall’s
,‘call’: 0, ‘credit’”:0, ‘card”: 0, ‘number’: 0] , label: ‘normal’]

, ‘call’:

P(credit | SPAM) = 0.15

& e

Probability of seeing a word in a SPAM message

P(Hello | SPAM) = 0.3

Gl

number

P(call | SPAM) = 0.25

Gl

card

~ credit

P(card | SPAM) = — =0.15

& &

call
P(number | SPAM) = L 0.15 Hello

15

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%



Spam filter example: Score proportional to probability

- Prior probability P(normal) is the initial guess about

the probability that any message is ‘normal’:
P(normal) = % = 0.67
- The probability score of a message that contains
‘credit’ and ‘card’ being normal:

P(normal) x P(credit | normal) x P(card | normal) = 0.67 x 0.15 x 0.15 = 0.015

- The score is proportional to the probability that a
message is normal given that it has the words
‘credit’ and ‘card’ in it:

0.015 ox P(normal | credit, card)

1: [ [‘Hello’:
2: [ [‘Hello”:
3: [ [‘Hello’:
4: [ ['Hello”:

5: [ [‘Hello

6: [ [‘Hello’:
7:[[‘Hello’: 1,
8:[ [‘Hello”:

,fcall: 1,
,‘call’: 0,

‘

,faall’: 1,

‘

,fall’: 1,
,‘callz 0,
,‘call’zo,

‘

call: 1,

‘

,faall: 1,

‘credit’:1, ‘card’:
‘credit’:1, ‘card’:
‘credit’:0, ‘card’:
‘credit’:0, ‘card’:
‘credit’:0, ‘card’”:
‘credit’:0, ‘card’:
‘credit’:0, ‘card”:
‘credit’:1, ‘card’:

O O O © © KB K

, ‘number’
, ‘number’:
, ‘number’
, ‘number’
, ‘number’:
, ‘number’:
, ‘number’:
, ‘number’:

1],
o],
:0],
:0],
1],
o],
o],
1],

label:
label:
label:
label:
label:
label:
label:
label:

‘normal’]
‘normal’]

normal’]

‘normal’]
‘normal’]
‘normal’]
‘normal’]
‘normal’]

9: [ [‘Hello’

1
1
0
0
i 1
1
1
1
3

‘

call: 1,

credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]

10: [[‘Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
11: [['Hello’: 0, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM’]
12:[[‘Hello’: 0, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘SPAM’]




Spam filter example: Score proportional to probability

- Prior probability P(SPAM) is the initial guess about the
probability that any message is ‘SPAM’:

4 1 : 1:[ [‘Hello’: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘normal’]
P( bP"X‘\[) = 'ﬁ = ()33 2:[[‘Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 0] , label: ‘normal’]
- 3:[[‘Hello’: 0, “call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
Th b b- | 't f th t t 1 ¢ d 't’ 4:[ [‘Hello’: 0, ‘call’: 1, ‘credit’:0, ‘card’: 0, ‘number’: 0] , label: ‘normal’]
- € probapiiity score o1 a message that contains credi ’ ’ 4 ; :

, ‘number’: 1] , label: ‘normal’]

and ‘card’ being SPAM: 6: [ [Hello's

7:[ [‘Hello’:

, ‘call’: 0, ‘credit’:0, ‘card’:
, ‘call’: 1, ‘credit’:0, ‘card’”:
8:[[‘Hello’: 1, ‘call’: 1, ‘credit’:1, ‘card’:
P(SPAM) x P(credit | SPAM) x P(card | SPAM) = 0.33 x 0.27 x 0.27 = 0.024 9: [['Hello”: 1, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1] , label: ‘SPAM']

10: [[‘Hello’: 1, ‘call’: 0, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]
11: [[‘Hello’: 0, ‘call’: 1, ‘credit’:1, ‘card’: 1, ‘number’: 1], label: ‘SPAM’]

- The score is proportional to the probability that a message 12: [[*Hello":0, ‘call 0, ‘credit'1, ‘card’ 1, ‘number’: 0], label: ‘SPAM]
is SMAP given that it has the words ‘credit’ and ‘card’ in it:

, ‘number’: 0] , label: ‘normal’]

, ‘number’: 0] , label: ‘normal’]

m O O O © ©O kB =

1
1
0
0
5:[[‘Hello’: 1, ‘“call’: 0, ‘credit’:0, ‘card’:
1
1
1 , ‘number’: 1] , label: ‘normal’]
3

0.024 < P(SPAM | credit, card)




Spam filter example

P(credit | normal) = % =0.2 P(credit | SPAM) =% =0.27

2
P(Hello | normal) =% =0.2 P(Hello | SPAM) = = 0.13

2
P(call | normal) = % = 0.25 Pleall | SPAM)=2=0.13
P(card | normal) = % =0.2 P(card | SPAM) = 14—5 =0.27

P(number | normal) = % =0.15 P(number | SPAM) =13—5 = 0.2

0.015 < P(normal|credit card)

0.024 < P(SPAM|credit card)




Bayes vs Nailve Bayes network

- Naive Bayes is a simplified form of a Bayesian network
- Asingle root node represents the class label C
- Feature nodes are directly connected with directe
edges from the class to the feature nodes
Key simplification:
- All features are conditionally independent given tF
class label:
- An observation is irrelevant or redundant
when evaluating the hypothesis (no overlap)
- Greatly reduces the complexity of the model
- Allows for efficient computation of probabilities

Naive Bayes P(AN B)
Class

Attributes

(=) )@....(@

P(C | Xg,..., Xn) X P(X1 | C) * P(X; | C)*... * P(X,, | C)* P(C)

Bayesian Network




Bayes vs Naive Bayes network

- We have three binary features X,, X,, X,, and a binary class label C
- Bayesian Network without conditional independence between the feature:
- Estimate 8 possible combinations of feature values for each class
- How many possible combinations in total for both class labels?
P(X1,X5, X3 | C)P(C)
P(X1, X2, X3)
- Using the Naive Bayes approach with conditional independence, we can reduce the
computational complexity by relaxing the dependencies
- How many estimations?

P(C

Ky, X, Xa)o=

pP(C

X1, X2, X3) x P(X;




Example: Building a classifier using a Discriminant Function

- One way to build a classifier is to calculate all posterior probabilities for the data points, given
a certain class, and assign it to the class with the highest probability
- Problem: multiplying small probabilities can lead to loss of precision as they can
become extremely small

P(x|c1).P(c1) .
G(x) = log >0 - thenassigntocl

P(x|c2).p(c2) ~
i.e.,P(x|c1).P(c1) > P(x|c2).P(c2)

- Simpler way: Discriminant function (X: attribute and C_, C,: class labels)

- Simpler as it doesn’t need the calculation of evidence

- Less subject to underflow issues

- However, the complexity of computation increases with multiple attributes
Likelihood Term
P (i Xl €1): P (1) o

P(%g5:5 Xnlc2)-p(c2) —
- then assign to cl

G(X) = log



Motivation for Naive Bayes network

- The likelihood term in Bayes Theorem accounts for the probability of samples represented by
features , given a certain class

- With several features and the dependencies between the variables, the computational cost
will be high.

- Alot of features means we have to calculate the joint probability of all the features even in
discriminant function.

- So, what is the solution?
- Naive Bayes Classifier



Naive Bayes Classifier

- Assumption: unlike Bayes Theorem, the assumption is that the input features are
independent variables (remove the dependency)

- With the above assumption we have for the likelihood term:
P(xq, ..., xp|c1) = P(xq|c1) ... P(xp|c1) = []j=1 P(x;|c1)

- Now, the discriminant function is:

[Te P(x;i|c1) . P(c1)
G(xq,...,x,) = lo >0 - thenassigntocl
e = OO PGaile2) -p(c) J




Naive Bayes Classifier: Flu test example

- We have a dataset of patients with attributes:

Feature: Test: {positive, Negative}
Class label: Flu: {True, False}

- Determine if the flu test generates accurate results for diagnosing flu

- Problem: calculate the probability of a patient having flu given a positive
test using Bayes theorem:

P(Test=Positive|Flu=T)*P(Flu=T) _ 5
P(Test=Positive) '

P(Flu = T|Test = Positive) =



Naive Bayes Classifier: Flu test example m
0.05

positive 0.85
Assume: Negative 0.15 0.9998
Likelihood term: P(Test=positive|Flu=T) = 0.85
Prior: P(FIu=T) = 0.0002

Using joint probability distribution formula, the Evidence term is:

P(Test=positive) = P(Test=positive|Flu=T) * P(FIu=T) + P(Test=positive|Flu=F) * P(Flu=F)
= 0.85%0.0002 + *0.9998 = 0.00017+ 0.14997 = 0.05
P(Flu=F) = 1-P(Flu=T) = 1- 0.0002 = 0.9998
P(Test=positive|Flu=F) =

P(Test=Positive|Flu=T)*P(Flu=T)
P(Test=Positive)
0.85x0.0002

—_— - = ~ 0,
= e 0.0034 ~ 0.34%

P(Flu = T|Test = Positive) =

Conclusion: Very bad flu test



Naive Bayes Classifier: Flu test example m
0.05

positive 0.85
- Now build a classifier using the Discriminant function G(X) Negative 0.15 0.9998
as: P(Flu = T|Test = Positive)
- We can write G(X):
_ p(Test = positivelhas flu).p(has flu) 0.85:0.0002 _
G(X) = log p(Test = positive|healthy).p(healthy) ~— 0.05%0.9998 2.46

- If G(x) <0 the patient with a positive test is less likely to have flu. Classified as healthy.

- Similarly:
P(Flu = T|Test = Negative) =
. p(Test = negative|has flu).p(has flu) 0.15+0.0002 _
G(X) = log p(Test = negative|healthy).p(healthy) 00500908~ k2

- If G(x) < 0 the patient with a negative test is less likely to have flu. Classified as healthy.
- This test is not very accurate



Naive Bayes Classifier: Adding more features

- In general, Discriminant function for multiple features:
P(%ys 5% €1 ) Pel)
GX)=Ilo >0 - thenassigntocl
g P05 | €2). D(€2) g

- However, with Naive Bayes and assuming variable independence:
& o Plxilel) « Plel)
=1 : >0 - thenassigntocl
r 1 P(x;lc2) .p(c2) g

- In the example we have accordingly:

G(xq,...,xn) = log

P(xq|c1).P(x3|c1). P(cl)
P(x4|c2).P(x,|c2).p(c2)

G(xq1,x3) = log



