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Intended Learning Outcomes

- Understand the concept and calculate components of Bayes Theorem
- Conditional, Marginal, Joint etc
- Be able to apply the chain rule

-  Describe how Directed Acyclic Graphs are used for a Bayes Network and how this differs 
from the Networks dealt with previously

- Understand and apply the concept of probabilities in Networks
- Describe the distinction between Naive Bayes and a Bayesian network

- Including concepts like conditional independence
- Calculate the Discriminant function in the context of a simple Naive Baye network



Probabilistic Graphical Models (PGM): Bayes Network

- Aka Belief Network and Decision Network

- In a nutshell: A network representing probabilistic dependencies 
between variables

- The connections/dependencies can be described as a ‘graph’
- Flexible models capable of capturing complex relationships

- Applications include:
- Diagnostics, reasoning, causal modeling, decision making under 

uncertainty, anomaly detection, natural language processing

- We will cover a simple Bayesian Network is called “Naïve Bayes” with a 
simpler structure and much stronger assumptions about the 
independence of features. 



Bayes theorem recap

If our data (input vector), and our outcome (e.g. labels) is A

Conditional or posterior Probability: P(𝜃 |data) 
Probability of one (or more) event given the occurrence of another 

event, e.g. P(𝜃 given data) or P(𝜃 | data).

Likelihood: P(data|𝜃)

Marginal Probability or Prior: P(𝜃)
The probability of an event irrespective of the outcomes of other random 
variables

‘Evidence’:  P(data)
What actually occurred

Joint Probability: P(𝜃, data) also written P(𝜃 and data)
Probability of two (or more) simultaneous events 



Recap Conditional Probability: P(𝜃|data)

- Conditional probability is a measure of the likelihood of an event occurring, given that another 
event (or set of events) has already occurred: P(A|B) = P(A,B) / P(B)

- Example: 
- What is the probability of a randomly selected person is a student (A) given that they 

own a pet (B)?
- P(A=Student|B=True) = P(A=Student,B=True)/ P(B=True) = .41/ (.45+.41) = .41/ .86 = 

.477 or 47.7%
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Recap Marginal Probability : P(data)

- The probability of a single event or variable without considering the effects of any other 
events or variables

- The marginal probability of an event A can be calculated by summing the joint probabilities of 
A occurring with all possible outcomes of another event B

- Example: 
- What is the probability that a card drawn from a pile of cards is “blue”.
- P(A=blue) = ∑P(A, B) = P(A=Blue, B=1) + P(A=Blue, B=2) =.06+ .04 =.1 or 10%



Recap Joint Probability: P(𝜃, data) or P(𝜃 and data)

- If A and B are two events, P(A,B) represents the probability of A and B occurring 
simultaneously

- Independent:
-  Occurrence of one event does not affect the probability of the other event: P(A)*P(B)

- Dependent:
-  Occurrence of one does affect the probability of the other event: P(A,B) = P(A|B) * P(B)

- Symmetric: P(A,B) = P(B,A) = P(B|A) * P(A) 

- Example: 
- The joint probability that it rains (A) and the sky is cloudy (B), P(A,B)
- If P(A=rain | B=cloudy) = 1/13 , P(B= cloudy) = 1⁄2 then, P(A,B) = 1/13 x 1/2 = 1/26



Recap Chain Rule in probability



Bayesian Networks: Probabilistic Graphical Models

- A ‘graph’ in the context of Networks is a mathematical 
structure used to model pairwise relations between 
objects

- Graphs consist of vertices and edges, where 
edges (aka links) connect vertices (aka nodes)

- The directed edges in the graph indicates the flow of 
information and the dependencies between variables

- For a Bayes Network, we use a ‘Directed Acyclic 
Graph’ to represents the probabilistic dependencies 
among a set of variables



Bayesian Networks as Directed Acyclic Graphs

- A directed graph with no cycles
- A Directed Acyclic Graph G can be thought of as a compact 

representation of a joint probability distribution over n variables X
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They are a generalization of random processes that depend on each other:
- Example 1: rainy weather pattern: Dark clouds increase the 

probability of raining later the same day
- Example 2: The probability of detecting a malware is influenced by 

the values of internal CPU events in a microprocessor



Bayesian Networks as Directed Acyclic Graphs

- Vertices : Variables
- Edges: A conditional probability

- An edge from y to x represents P(x|y)
- For vertex X

1
 the conditional probability is:

- Recall:

- The joint distribution contains the information we need to 
compute the probability of interest using Bayesian Networks 



The advantages of Bayesian Networks

- Offers a more nuanced model of a system, particularly important with imperfect data

- Interoperable and visual structure

- Answer probabilistic queries and compute Inference
- Example: “What is the probability of an email being SPAM if it has the words “provide 

your credit card information”?



Probabilities: Spam filter example

- Given training data (right), determine the 
conditional probability of seeing ‘Hello’ in a 
‘normal’ message

- The probabilities of discrete individual words 
(not a continuous property) and can be 
called ‘Likelihood’



Spam filter example: ‘normal’



Spam filter example: ‘SPAM’



Spam filter example: Score proportional to probability

- Prior probability P(normal) is the initial guess about 
the probability that any message is ‘normal’: 

- The probability score of a message that contains 
‘credit’ and ‘card’ being normal:

- The score is proportional to the probability that a 
message is normal given that it has the words 
‘credit’ and ‘card’ in it:



Spam filter example: Score proportional to probability

- Prior probability P(SPAM) is the initial guess about the 
probability that any message is ‘SPAM’: 

- The probability score of a message that contains ‘credit’ 
and ‘card’ being SPAM:

- The score is proportional to the probability that a message 
is SMAP given that it has the words ‘credit’ and ‘card’ in it:



Spam filter example





Bayes vs Naïve Bayes network 

- Naive Bayes is a simplified form of a Bayesian network
- A single root node represents the class label C
- Feature nodes are directly connected with directed 

edges from the class to the feature nodes
- Key simplification:

- All features are conditionally independent given the 
class label:

- An observation is irrelevant or redundant 
when evaluating the hypothesis (no overlap)

- Greatly reduces the complexity of the model 
- Allows for efficient computation of probabilities







Example: Building a classifier using a Discriminant Function

- One way to build a classifier is to calculate all posterior probabilities for the data points, given 
a certain class, and assign it to the class with the highest probability

- Problem: multiplying small probabilities can lead to loss of precision as they can 
become extremely small

- Simpler way: Discriminant function (X: attribute and C
1
, C

2
: class labels)

- Simpler as it doesn’t need the calculation of evidence
- Less subject to underflow issues
- However, the complexity of computation increases with multiple attributes



Motivation for Naïve Bayes network 

- The likelihood term in Bayes Theorem accounts for the probability of samples represented by 
features , given a certain class

- With several features and the dependencies between the variables, the computational cost 
will be high.

- A lot of features means we have to calculate the joint probability of all the features even in 
discriminant function.

- So, what is the solution?
- Naïve Bayes Classifier



Naïve Bayes Classifier

- Assumption: unlike Bayes Theorem, the assumption is that the input features are 
independent variables (remove the dependency)

- With the above assumption we have for the likelihood term:

- Now, the discriminant function is:



Naïve Bayes Classifier: Flu test example

- We have a dataset of patients with attributes:

- Determine if the flu test generates accurate results for diagnosing flu

- Problem: calculate the probability of a patient having flu given a positive 
test using Bayes theorem:



Naïve Bayes Classifier: Flu test example

Assume:

Likelihood term:                       P(Test=positive|Flu=T) = 0.85

Prior:                                              P(Flu=T) = 0.0002

Using joint probability distribution formula, the Evidence term is:
            P(Test=positive) = P(Test=positive|Flu=T) * P(Flu=T) + P(Test=positive|Flu=F) * P(Flu=F)

                           = 0.85*0.0002 + 0.05*0.9998 = 0.00017+ 0.14997 = 0.05
P(Flu=F) = 1-P(Flu=T) = 1- 0.0002 = 0.9998

P(Test=positive|Flu=F) = 0.05

Conclusion: Very bad flu test

0.9998



Naïve Bayes Classifier: Flu test example

- Now build a classifier using the Discriminant function G(X)                                for 1 feature 
as:

- We can write G(X):

- If G(x) < 0  the patient with a positive test is less likely to have flu. Classified as healthy.
- Similarly: 

- If G(x) < 0 the patient with a negative test is less likely to have flu. Classified as healthy.
- This test is not very accurate

0.9998



Naïve Bayes Classifier: Adding more features

- In general, Discriminant function for multiple features:

- However, with Naïve Bayes and assuming variable independence:

- In the example we have accordingly:


