
ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

MOCO Amsterdam garden

L12: Support vector
machines (SVM)

Intended Learning Outcomes

- Describe how a Support Vector Machine differs from previous methods like 1-layer or
multi-layer neural nets

- Describe the role of the ‘Support Vectors’
- For a linear Support Vector Machine describe and apply how to calculate the margin between

the bounding lines
- Apply the Hinge cost function and weight update rule

- Describe the non-linear Support Vector Machine mappings to higher dimensions
- Describe how the cost function is modified

- Describe different kernels and the kernel trick

Basic idea of support vector machines (SVM)

- Supervised learning model for complex classification,
regression, and outlier detection problems

- Uses optimal data transformations to determine
boundaries between data points based on
predefined classes, labels, or outputs

- Just like 1-layer or multi-layer neural nets
- Optimal hyperplane for linearly separable patterns

- Extend to patterns that are not linearly separable by
transformations of original data to map into new space
– the Kernel function

- SVM algorithm for pattern recognition

Support Vector Classifier or Linear SVM

- Only ‘support vectors’ have a significant impact on
model training

- We can remove the non-support vectors without
impacting the model

Support Vector Classifier or Linear SVM

Given a learned weight vector w and bias w0 and an input
vector x, the SVM ‘hypothesis function’ h for our line is:

Where the lower and upper bounds are shown in the
stippled blue lines (right)

Maximizing the margin means a more generalized model

Determining the distance of a point to the line

The numerator |ax0+by0+c| is the absolute value of
the line equation evaluated at the point (x0, y0)

Distance of a point x0 from the line:

Determining the margin between the bounding lines

The decision boundary H is:

The distance (d) or margin from the line for a given set of
points can be written as:

Where we have, as for the single point:

Determining the distance to the line

- We want a classifier (linear separator) with as big a
margin (d) as possible

- In order to maximize the margin, we need to minimize
||w||

- With the condition that there are no data-points between
the bounding lines

Maximising the distance to the line

The task is to determine how to modify ||w||. Note that:

Margins are often defined as having a distance equal to 1 from the data-separating-hyperplane

Maximising the distance to the line: Cost function
For our cost function, a desirable property is that not all points need to satisfy the requirement

We can use a ‘Soft margin classifier’ : This change allows some points in the training data to
violate the separating line

Here we use the ‘hinge loss’:

With number of observations (n) and the number of features (m) we have:

Here, the C term is a regularization parameter where C >=0
- Determining C helps to identify the support vectors which determine the maximal margin

Gradient of the Cost Function

Next, we take partial derivatives wrt the weights to find the gradients

Using the gradients, we update the weights or parameters of the model.

We minimize the Cost with respect to w and w0 and maximize it with respect to C, to lower
misclassifications.

Weight Update Rule

For correctly classified samples given the following and α as the learning rate:

For incorrectly classified samples:

Higher dimensional SVMs

What if our data is not linearly separable?

Often there is no straight line we can draw to
separate the data

The idea is to gain linearly separation by mapping
the data to a higher dimensional space

We apply a function to the data to transform it into a
space that is easier to work in

Non–Linear SVMs: Mappings

The following set can’t be separated by a linear function, but can be separated by a quadratic one

However, if we map it as we can separate:

Non–Linear SVMs: Mappings

Gradient of the Cost Function with higher dim transform

As before, we take partial derivatives wrt the weights to find the gradients
- Using the gradients, we update the weights or parameters of the model

We minimize the Cost with respect to w and w0 and maximize it with respect to C, to lower
misclassifications.

We add the 𝛷 to represent the higher dimensional transform of the input vectors

Support Vector Machines and kernel functions

- Move the data from a low dimension to another dimension

- Find a support vector classifier that classifies the higher dimensional data

- There may be several ways to move the data to higher dimension
X→ X2, X →X3 , ... which one to use?

- Kernel functions systematically find Support Vector Classifiers in higher dimensions.

- Kernel Functions calculate the relationships between every pair of observations as if they are
in a higher dimension; they don’t actually do the transformation.

- Examples: Polynomial Kernel, Radial Basis Function (RBF) Kernel

Polynomial Kernel

- Has a parameter d that indicates the degree of polynomial

- For a value of d, the kernel function computes the relationship between each pair of
observations after they are moved to the d-Dimensional space. These relationships are used
to find a Support Vector Classifier.

- Polynomial Kernel increases dimensions by setting d.

- Cross Validation can be used to find a good value for d.

- Example:
- d=2 for the drug dosage example. The polynomial kernel computes the 2D relationships

between each pair of observations.
- These relationships are used to find a Support Vector Classifier.

Radial Basis Function

- Finds Support Vector Machines in infinite dimensions

- Behaves like a weighted nearest neighbor model

- It looks at the closest observations (neighbors) and gives them a higher weight (or influence)
to classify the new observation

Kernel trick

- Kernel functions systematically find Support Vector Classifiers in higher dimensions.

- Kernel Functions calculate the relationships between every pair of observations as if they are
in a higher dimension; they don’t actually do the transformation.

- Calculating the higher dimensional relationships without transforming the data to a higher
dimension is called “The Kernel Trick”

- Benefits:
- Reduces the amount of computation required for SVMs by avoiding the math that

transforms the data
- Makes calculating the relationships in the infinite dimensions used by the Radial Kernel

possible.

