ECS171: Machine Learning

L12: Support vector
machines (SVM)

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria



Intended Learning Outcomes

- Describe how a Support Vector Machine differs from previous methods like 1-layer or
multi-layer neural nets
- Describe the role of the ‘Support Vectors’
- For a linear Support Vector Machine describe and apply how to calculate the margin between
the bounding lines
- Apply the Hinge cost function and weight update rule
- Describe the non-linear Support Vector Machine mappings to higher dimensions
- Describe how the cost function is modified
- Describe different kernels and the kernel trick



Basic idea of support vector machines (SVM)

Supervised learning model for complex classification,
regression, and outlier detection problems
- Uses optimal data transformations to determine
boundaries between data points based on
predefined classes, labels, or outputs

Just like 1-layer or multi-layer neural nets
- Optimal hyperplane for linearly separable patterns

Extend to patterns that are not linearly separable by
transformations of original data to map into new space
— the Kernel function

SVM algorithm for pattern recognition
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d: shortest distance between the observations in each cluster and the classification threshold.
dis called “margin”.



Maximal Margin Classifier @ oo+
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d is called “margin”.

The threshold that gives the largest margin to make classifications for both
clusters, is called “Maximal Margin Classifier”.
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The maximal margin classifier is very close to the “obese” observations and
very far from the majority of “not obese” observations.



Maximum Margin Classifier : @ obese (1)
Outlier Sensitivity in Training Data @ ot obese (1)
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The maximal margin classifier is very close to the “obese” observations and
very far from the majority of “not obese” observations.

Here, the threshold is very sensitive to training data.
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* We must allow misclassifications to find a threshold not very sensitive to

outliers.
* Why is the outlier misclassified in this case?



Making a threshold not very sensitive @ obese (1)
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We must allow misclassifications to find a threshold not very sensitive to
outliers. Here, the threshold is less sensitive to the training data.

Why is the outlier misclassified in this case? Because it is closer to the “obese”
observations.



Making a threshold very sensitive @ obese (1)
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The maximal margin classifier is very close to the “obese” observations and very far
from the majority of “not obese” observations.

Here, the threshold is very sensitive to training data — Low Bias, High Variance.
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We must allow misclassifications to find a threshold not very sensitive to outliers. Here,
the threshold is less sensitive to the training data.

Here, the threshold is less sensitive to the training data — higher bias, lower variance
Here, the distance between the observations and the threshold is called “Soft Margin”.
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We must allow misclassifications to find a threshold not very sensitive to outliers. But
too many misclassifications is also bad!

Here, the threshold is less sensitive to the training data — higher bias, lower variance
Here, the distance between the observations and the threshold is called “Soft Margin”.



How to determine the soft margin?

Soft margin is controlled by a parameter
denoted as ‘C’ that can be determined using CV.

Parameter ‘C’ is a regularization parameter.
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* Which soft margin is better to achieve a generalized model?
* Cross Validation is used to determine how many misclassifications and observations

to allow inside of the Soft Margin to get the best Soft Margin Classifier. In other
words, CV is used to tune the hyperparameter ‘C’.

Weight (lbs)



Soft Margin Classifier/Support @ oo 1)
Vector Classifier @ otobese (1)

Soft margin is controlled by hyperparameter ‘C’.
Parameter ‘C’ is a regularization parameter.
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*  When “Soft Margin” is used to determine the location of the decision boundary, this is
called a “Soft Margin Classifier”.

* If this is the best soft margin determined by CV, then the model allows one misclassification
and 4 observations that are correctly classified to be within the Soft Margin.



Soft Margin Classifier/Support ® - 1)
Vector Classifier: Support Vectors @ ot obese (1)

Soft margin is controlled by hyperparameter ‘C’.
Parameter ‘C’ is a regularization parameter.
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* Observations on the edge and within the Soft margin are called “Support Vectors”.
* Support Vector Classifier for a 1D data is a point.



2D Data
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Support Vector Classifier or Linear SVM

- Only ‘support vectors’ have a significant impact on

model training
Optimal Hyperplane

;
Support vector

- We can remove the non-support vectors without
impacting the model




Support Vector Classifier or Linear SVM

Given a learned weight vector w and bias w, and an input
vector x, the SVM ‘hypothesis function’ h for our line is:

+1 ifh(x) >0

i=wiengt if h(x) < 0

Where the lower and upper bounds are shown in the
stippled blue lines (right)

Maximizing the margin means a more generalized model



Determining the distance of a point to the line

The numerator |ax,+by +c| is the absolute value of

the line equation evaluated at the point (xo, yo) .
Distance of a point x, from the line: x: (x0,y0)
Q.

| azxg + byo + ¢ | ‘ x

A /a2 _'_ b2 /'_:’:'



Determining the margin between the bounding lines

W is the weight vector

The decision boundary H is: W is the bias | H
X is the input vector ;

H:h(x) = wix+wy=0

The distance (d) or margin from the line for a given set of T - |
points can be written as: ]

gt [HED
dor(xg) = =
w0 = i T wiP I

Where we have, as for the single point:

[lw|| = sqrt(wl”2 + w272 + ... + wn”2) { _
[lw]]|? = wlAr2 + w272 + ... + wn”2 ’ . :




Determining the distance to the line

- We want a classifier (linear separator) with as big a
margin (d) as possible | H

- In order to maximize the margin, we need to minimize
Iwil /|

!

- With the condition that there are no data-points between [ ] -ﬂ
the bounding lines /
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Maximising the distance to the line

wl xo+wp| |h(x0)] 1
d X — | 0 ol _— - -
3 (Xo) llw||? wi> ~ |lwl?
yields 2

—— distance between clusters’ edges = W

The task is to determine how to modify ||w||. Note that:

Maximizing —— = Minimizing > |w||2

llw]|?

Margins are often defined as having a distance equal to 1 from the data-separating-hyperplane



Maximising the distance to the line: Cost function

For our cost function, a desirable property is that not all points need to satisfy the requirement

We can use a ‘Soft margin classifier’ : This change allows some points in the training data to
violate the separating line

hinge loss

Here we use the ‘hinge loss’: (1-v)+

c(x, y,f(x) = { 0 ify*f(x) 2 1 y: actual label

1 —yxf(x), else f(x): predicted label
With number of observations (n) and the number of features (m) we have:
.1
SVM Cost = min,, > mowf+CYM max(0,1 —y; * £(x))

Here, the C term is a regularization parameter where C >=0
- Determining C helps to identify the support vectors which determine the maximal margin



Gradient of the Cost Function
SVM Cost = minW% L owf+ (Y max(0,1 —y; x f(x;))

SVM Cost = min,, = Zmlwl +CX, €) §i)20fori=1,.,n
The hinge loss here is represented by the slack variables £(i).

SVM Cost = min,, %Z{Zl w? +CYXM, max(0,1—y; * (Wlx; + wp))

Next, we take partial derivatives wrt the weights to find the gradients
Using the gradients, we update the weights or parameters of the model.

We minimize the Cost with respect to w and w, and maximize it with respect to C, to lower
misclassifications.



Weight Update Rule

c(x,y,f(x)) = max(0,1 -y * f(x))

cwmyf)={1_

if y * f(x) > 1
else

For correctly classified samples given the following and a as the learning rate:

SVM Cost = minwé mowi+ (X max(0,1 —y; * (wTx; + wp))

W=WwW-—«a * W

For incorrectly classified samples:

w=w—a *WwW—Cxy;*x;)=w+ax(Cyx; —w)




Higher dimensional SVMs

5 ._---
4 .-

||||| [P e v ] yas i Ko it Ny




What if our data is not linearly separable?

Data projected to R*(nonseparable)

1.5

Often there is no straight line we can draw to
separate the data

The idea is to gain linearly separation by mapping
the data to a higher dimensional space os

We apply a function to the data to transform it into a g o
space that is easier to work in >
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Non-Linear SVMs: Mappings

The following set can’t be separated by a linear function, but can be separated by a quadratic one

(x—a)fx.—b.)‘: x*—=(a+b)x+ab

. . 2
However, if we map itas xt— {x ,x} we can separate:




Non-Linear SVMs: Mappings
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Figure 5: (Left) A data set in R? not linearly separable
(Right) The same dataset transformed by the transformation
(- Mp)? +(y - Mp,
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Support Vector Machines
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Support Vector Machines
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Gradient of the Cost Function with higher dim transform
SVM Cost = min,, %Z?Ll wf +CXL, max(0,1 — y; * fxi)))

SVM Cost = mlnw zmlw +CZL 1& gi)20fori=1,...,n
The hinge loss here is represented by the slack variables &(i).
SVM Cost = minwé Lowi+ (Y max(0,1 —y; *x (w @ X;) +wp))

As before, we take partial derivatives wrt the weights to find the gradients
- Using the gradients, we update the weights or parameters of the model

We minimize the Cost with respect to w and w, and maximize it with respect to C, to lower
misclassifications.

We add the @ to represent the higher dimensional transform of the input vectors



Support Vector Machines and kernel functions

- Move the data from a low dimension to another dimension
- Find a support vector classifier that classifies the higher dimensional data

- There may be several ways to move the data to higher dimension
X— X2, X —X3, ... which one to use?

- Kernel functions systematically find Support Vector Classifiers in higher dimensions.

- Kernel Functions calculate the relationships between every pair of observations as if they are
in a higher dimension; they don’t actually do the transformation.

- Examples: Polynomial Kernel, Radial Basis Function (RBF) Kernel



Polynomial Kernel

- Has a parameter d that indicates the degree of polynomial

- For a value of d, the kernel function computes the relationship between each pair of
observations after they are moved to the d-Dimensional space. These relationships are used
to find a Support Vector Classifier.

- Polynomial Kernel increases dimensions by setting d.
- Cross Validation can be used to find a good value for d.

- Example:
- d=2 for the drug dosage example. The polynomial kernel computes the 2D relationships
between each pair of observations.
- These relationships are used to find a Support Vector Classifier.



Radial Basis Function

- Finds Support Vector Machines in infinite dimensions
- Behaves like a weighted nearest neighbor model

- It looks at the closest observations (neighbors) and gives them a higher weight (or influence)
to classify the new observation



Kernel trick

- Kernel functions systematically find Support Vector Classifiers in higher dimensions.

- Kernel Functions calculate the relationships between every pair of observations as if they are
in a higher dimension; they don’t actually do the transformation.

- Calculating the higher dimensional relationships without transforming the data to a higher
dimension is called “The Kernel Trick”

- Benefits:
- Reduces the amount of computation required for SVMs by avoiding the math that
transforms the data
- Makes calculating the relationships in the infinite dimensions used by the Radial Kernel
possible.



