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Intended Learning Outcomes

- Describe how a Decision Tree is constructed and the relation to Bagging and Random 
Forests

- Describe a ‘Greedy Search’ 
- Describe and apply methods for component selection such as Entropy and Tree Optimisation 

such as Information Gain
- Describe what uses Principal Component Analysis has for data pre-processing and projection
- Apply the steps of a PCA on a simple example

- Calculate the eigenvalues and eigenfunctions, percentage of variance and re-priented 
data

- Describe the importance of the assumption of linearity, and what that implies in terms of the 
preservation of global vs local structure in the data



Decision trees 

- Partition the data to discern 
predictive patterns

- Key concepts:
- Entropy
- Information Gain

- Decision Trees are the foundation 
for several classical machine 
learning algorithms including:

- Bagging
- Random Forests
- Boosted Decision trees



Decision trees 

- Constructing a decision tree is recursive problem
- Top-down approach

- Fast and accurate
- Invariant to scaling of inputs 

- Recall e.g. SVMs require the features be normalized prior to training the model
- Good for both classification and regression
- Constructed by divide and conquer, and a greedy search algorithm
- The core algorithm for building decision trees is called ID3 [by J. R. Quinlan]
- Decision trees are constructed using:

- ‘Divide and Conquer’ algorithm recursively
- Followed removing sections or ‘pruning’

- Pruning helps generalisation
- Avoids overfitting



Construction of a Decision Tree
Overall approach:

1. Start with an attribute
2. Split into branches based on attribute values
3. Stop expanding the sub-branch once all samples 

in branch have the same class label
4. For every node at a branch, repeat step 1-3

- Challenges in constructing a decision tree:
- Which attribute to select?
- How to specify threshold for a numeric 

attribute?
- How to keep the decision tree small?

Will we play a game?
Decision Tree diagram



Recursive divide and conquer



Greedy Search

- Uses a measure of ‘purity’ for each node
- With this measure, the tree construction algorithm 

selects the attribute that generates the purest 
sub-nodes



Attribute selection

- Quantifying ‘purity’ is key to training 
- We will cover concepts in the context of a ‘Greedy’ search:  Entropy and Information

‘pure’



Entropy and Information are metrics for uncertainty

- Entropy is the measure of purity of a decision node 
in a decision tree

- Entropy is used to calculate the homogeneity of a 
decision node

- Measured in units called ”bits”
- Is ”0” if the sample in a decision node is 

homogeneous in terms of the class label
- Is “1” if the sample is equally divided

- ‘Information Gain’: measure of the decrease in 
uncertainty obtained by splitting a dataset based 
on some additional attribute



Estimating Entropy



Estimating Entropy

- For the weather dataset, 
- Dataset for variable “Played” contains:

- 10 counts of ‘Yes’, and 4 counts of ‘No’
- Take i=1 is ‘Yes’, and i=2 is ‘No’
- Estimating the Entropy now becomes:



Measuring the Entropy of ‘Outlook’ variable





Estimate the entropy of “Outlook” wrt “Played”: E(Played, Outlook)

- Here, E(Played, Outlook) is estimated looking at the 
various possibilities for ‘outlook’, carrying the ‘Played’:

- We see that:

- And finally, that: 



Decision Tree optimisation problem

- Minimize Entropy.

- Maximizing Information Gain (IG) minimized entropy

- This is an optimization problem



Entropy and Information Gain (IG)

- Information Gain (IG) is the informational 
value of creating a branch on the outlook 
attribute

- The feature with the highest information gain 
is selected as a decision node

- We calculate the IG for each attribute, and 
split on the attribute that gains us the most 
information



Generating Classification Rules

- Unnecessary structure can ‘clutter’ the tree
- We ‘prune’ to eliminate unnecessary structure



Selecting an optimal size tree

- Post pruning (backward pruning):
- Build a large tree that fully describes the 

data 
- Very complex model with zero training 

error
- Start from the leaves and prune back by 

erasing the rules with minimal (negative) 
impact to the error/performance, based on 
cross validation.

- Takes into account a combination of attributes.
- Pre pruning (during construction of trees)

Wikipedia



Post-pruning operations

1. Subtree replacement (primary pruning operation)

- Select some subtrees and replace them with single leaves
- It may decrease the accuracy of the training set. However, it may increase the accuracy on 

an independently chosen test set.

2.  Subtree raising

- More complex than subtree replacement
- Used in C4.5 decision tree building system
- Time-consuming operation
- May require reclassification of the samples at some of the affected nodes



Subtree Raising Operation



Bagging/Bagged Decision Trees (Bootstrap Aggregating)

- Hyperparameter in Bagging: the ‘t’ number of trees
- Algorithm:

1. Sample with Replacement, n training observations from the 
dataset for the training set

2. Train a decision tree on the observations
3. Repeat 1) and 2) t times. This will result in t decision trees.
4. Aggregate the predictions from the t decision trees. 

- Either take the majority vote or take the average if the 
output of the decision trees are numerical values (such as 
predicting temperature, price, etc.)

- Very similar to Random Forest algorithm



Random Forest

- Unlike Bagged DT, a Random Forest has a hyperparameter that controls the 
number of features to try when finding the best split (injects randomness)

- Feature bagging:
- Given a dataset D with p features, try only a random subset of features given 

by size     or 

- Randomness makes individual subtrees more unique and reduces correlation 
between the trees

- Great overall performance.



Comparison: Random Forests and Decision Trees

- Random Forests
- Prevent Overfitting
- Can make computations slower

- Decision Trees
- A Deep DT overfitts
- Does not need additional overhead



Data exploration and a precursor to unsupervised learning

- Covered under pre-processing, we now revisit 
Principal Component Analysis 

- Use examples:
- Dimensionality reduction/data compression
- Data visualization and Exploratory Data 

Analysis
- Create uncorrelated features/variables that 

can be an input to a prediction model
- Uncovering latent variables/themes/concepts
- Noise reduction in the dataset



PCA example for preprocessing

- Principal Component Analysis (aka see below)

- Basic principle: Some axes of variability are more 
important than others

- PCA is a dimensionality reduction technique used to 
transform high-dimensional data into a 
lower-dimensional representation 

- Preserving the most ‘important information’

- Transforms a set of possibly correlated variables into 
a set of linearly uncorrelated variables

- See “pca_example.ipynb” from L2

PCA was invented in 1901 by Karl Pearson,[9] as an analogue of the 
principal axis theorem in mechanics; it was later independently 
developed and named by Harold Hotelling in the 1930s.[10] Depending 
on the field of application, it is also named the discrete 
Karhunen–Loève transform (KLT) in signal processing, the Hotelling 
transform in multivariate quality control, proper orthogonal 
decomposition (POD) in mechanical engineering, singular value 
decomposition (SVD) of X (invented in the last quarter of the 19th 
century[11]), eigenvalue decomposition (EVD) of XTX in linear algebra, 
factor analysis (for a discussion of the differences between PCA and 
factor analysis see Ch. 7 of Jolliffe's Principal Component Analysis),[12] 
Eckart–Young theorem (Harman, 1960), or empirical orthogonal 
functions (EOF) in meteorological science (Lorenz, 1956), empirical 
eigenfunction decomposition (Sirovich, 1987), quasiharmonic modes 
(Brooks et al., 1988), spectral decomposition in noise and vibration, 
and empirical modal analysis in structural dynamics. 

Wikipedia

linkedin.com



PCA on MNIST dataset

- The MNIST dataset has 784 dimensions for each example - 784 pixels
- Do we need all 784 dimensions?



Principal Components don’t look intuitive PC0

PC1

PC2
Average 3

Whole dataset

Does the dataset have a normal 
distribution? 



Steps of a PCA calculation

Dataset D with size n and m features

1. Standardize: Z-score (z = (x - μ) / σ) so has μ=0 , σ=1
2. Compute covariance matrix (relationship and the dependency) 

∑ or correlation matrix (strength and direction)
3. Compute eigenvalues (λ

i
 ) and eigenvectors (e

i
) with the 

covariance matrix ∑
4. Obtain the principal components: Pick the top x eigenvectors 

corresponding to the largest eigenvalues in descending order
5. Project the data into eigenvectors: Reorient (transform) the 

original data into the new coordinate system defined by the 
selected principal components

Put differently we 
maximize variance:
Project to the line that 
minimizes variance or
Squared Sum of 
deviations from the 
mean



Recall: eigenvalues (λ
i
 ) and eigenvectors (e

i
)  

- Eigenvalues (λ
i
)  determine the importance of 

eigenvectors (e
i
) (i.e., components) 

- Indicate variance in data (spread)

- The direction of the principal components oriented 
towards the larger spread of the data



Covariance Matrix ∑



Using ∑ Find Eigenvalues

- Solve the following given I is the identity matrix:

- Example:

- Filling in from above we have:

- Using the determinant:
-
- This leaves us with the eigenvalues λ

1 
and λ

2
:



Percentage of variance in the Principal Components



Transformed features

- PCA provides the linear Transformation of the 
original features which will produce new features 
called principal components that are uncorrelated 
(perpendicular or orthogonal)

- The transformation is done by calculating 
eigenvalues and eigenvectors



Find Eigenvectors

- Solve:

- Example, given  λ
1
and ∑:

- We now have: 

- For e
1
 leading to:

- Eigenvectors have to be unit length to avoid multiple solutions ( i.e., || e
i
 ||=1)

- We divide e
1
 by its length: 

- Now do the same for e
2 

etc…



Re-Orienting the Data using Principal Components

- Sort by which eigenvalue is largest, from before:

- If we only use one principal component:

- The transformed dataset becomes:

The feature vector is the selected PC(s). In this case, it is e
1
.



Adding more Principle components allows us to capture 
more of the variance

For PCA to work perfectly data must 
have a normal distribution



Assumptions of PCA

- PCA is a linear dimension reduction technique. However, it can lead to poor results when 
dealing with non-linear structures.

- PCA must be performed with standardized data (mean =0, Variance = 1).
- Just one PCA plot should be generated by considering the maximum variances within the 

aIributes. It preserves large pairwise distances.
- It doesn’t work well when the pairwise distances are small

- PCA can not preserve local distances in data. 
- Only global distance (large distances) are preserved.

- PCA transform the data into a new set of orthogonal components, ensuring that the first 
component aligns to the maximum variance in the dataset, and subsequent components align 
to the next maximum orthogonal variance, and so on.



Nonlinearity and PCA



PCA relationship to Neural Networks

- PCA is closely related to a particular form of neural network
- An autoencoder is a neural network whose outputs are its own inputs
- The goal is to minimize reconstruction error


