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Intended Learning Outcomes

- Describe how a Decision Tree is constructed and the relation to Bagging and Random
Forests

- Describe a ‘Greedy Search’

- Describe and apply methods for WM selection such as Entropy and Tree Optimisation
such as Information Gain

- Describe what uses Principal Component Analysis has for data pre-processing and projection

- Apply the steps of a PCA on a simple example

- Calculate the eigenvalues and eigenfunctions, percentage of variance and re-priented
data
- Describe the importance of the assumption of linearity, and what that implies in terms of the

preservation of global vs local structure in the data



Decision trees

- Partition the data to discern
predictive patterns
- Key concepts:
- Entropy
- Information Gain
- Decision Trees are the foundation

for several classical machine
learning algorithms including:
- Bagging
- Random Forests
- Boosted Decision trees




Decision trees

- Constructing a decision tree is recursive problem
- Top-down approach
- Fast and accurate
- Invariant to scaling of inputs
- Recall e.g. SVMs require the features be normalized prior to training the model
- Good for both classification and regression
- Constructed by divide and conquer, and a greedy search algorithm
- The core algorithm for building decision trees is called ID3 [by J. R. Quinlan] L”IX(;
- Decision trees are constructed using:
- ‘Divide and Conquer’ algorithm recursively
- Followed removing sections or ‘pruning’
- Pruning helps generalisation
- Avoids overfitting




Construction of a Decision Tree
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Qverall approach; Will we play a game?
O, lﬂ VJ\,M/\ A AW Decision Tree diagram
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2. Splitinto branches based on attribute values o MU I
3. Stop expanding the sub-branch once all samples sunny rain_
. Splitting "~
in branch have the same class label i overcast
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Recursive divide and conquer

Outlook=‘sunny’ has 3 Yes and 2 No, so we can split X
\
Dataset vV | l
Temperature Outlook Humidity Windy Playgd? ¥ Decnsmn Tree Dlagram
- AL
X‘ Mild ( Sunny 80 No Q Yes Root | outiook?
0( Hot t Sunny 75 Yes No e
K Hot Overcast 77 No Yes sunny rain g
Cool Rain 70 No v

L~ SN
Yes Splitting ~~ " overcas‘ ! N

Cool Overcast 72 Yes Ye /
gg? ;AAAAL_,f = = =
No

Mild Sunny 77 No g humldlty7 Wlndy7
Cool L Sunny 70 No » Yes Decision I
Node
Mild Rain 69 No Yes
_ <75 No

Mild [ Sunny 65 Yes ! Yes ]
Mild Overcast 77 Yes Yes

q
Hot Overcast 74 No Yes
Mild Rain 77 Yes No - \
Cool Rain 73 Yes No Leaf 4\
Mild Rain 78 No Yes
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- Uses a measure of| rity’Jfor each node
- With this measure, the tree construction algorithm
selects the attribute that generates the purest

C——
sub-nodes

L

Greedy Search

Decision tree construction procedure:
* Create a splitting rule
* Divide the data using the splitting rule
* Repeat
* Stop when final sets (leaves) are homogenous
(i.e. same class)

Dataset
Temperature Outlook Humidity Windy Played?
Mild Sunny 80 No Yes
Hot Sunny 75 Yes No
Hot Overcast 77 No Yes
Cool Rain 70 No Yes
Cool Overcast 72 Yes Yes
Mild Sunny 77 No No
Cool Sunny 70 No Yes
Mild Rain 69 No Yes
Mild Sunny 65 Yes Yes
Mild Overcast 77 Yes Yes
Decision Tree Diagram
Root ~~ outlook?
i
sunny rain
Splitting overcast
-~~~ humidity? Yes () windy?
Decision A
Node \
<75 >75 Yes No
]
No w
Yes 2 No @2 Yes (3
No (1) Yes ()
Leaf
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Attribute selection

Quantifying ‘purity’ is key to training
We will cover concepts in the context of a ‘Greedy’ search: Entropy and Information

outlook humidity windy temperature
¥ N ey
normal high \ ‘ yes ‘ ‘ no mild cool | hot
es: 3 es: 2
No: 3 No: 1




Entropy and Informatlon are metrics for uncertainty

VAL ‘\O‘A,‘.,
- Entropy is the measure of mw'rbL of a decision node
in a decision tree

- Entropy is used to calculate the homogeneity of a
decision node
- Measured in units called "bits”

b\’\‘ - Is 0" if the sample in a decision node is
ﬁ/ homogeneous in terms of the class label
) Is “1” if the sample is equally divided S0/S0O

- ‘Information Gain’: measure of the decrease in

uncertainty obtained by splitting a dataset based ’8'}
on some additional attribute (/, \.2(

l:p-»‘f‘ ; 6¢/V\ (P = 05) \4‘-_@(/




Estimating Entropy

c

Entropy = = pilogop; ;s.t. ceX
=1
X : dataset attributes o
G the it" value for feature c
piiprobability of the it" value for featurec (0<p <1)
0 <Entropy <1




c
Entropy =6 p;log,p; ;s.t. c€X
i=1

X : dataset attributes
c;: the it" value for feature c

- For the weather dataset p;: probability of the i*" value for featurec (0 <p <1)
’ 0 < Entropy <1

Estimating Entropy

- Dataset for variable “Played” contains:
- 10 counts of ‘Yes’, and 4 counts of ‘No’ - _
— c— ——— TempLatuLe %Igf-k" Humidity Windy Played?
- Take i=11is ‘Yes’, and i=2 is ‘NoO’ Mid Sunmy 0 et ™

Dataset

- EStimating the Entropy now becomes: Hot Sunny 75 Yes No
p 1 p 2 Cool Overcast 72 Yes Yes

E(Played) = E( 4/14 ,10/14) = E(0.28, 0.71) T No

- 0-28 Iog20-28 o 0-71 Io 20.71 :l:: OSunny‘ jj :es :es

m/\yq S 0 50 + 0 35 0 85 blts Hot Overcast 74 No Yes

Mild Rain 77 Yes No

Qrv

_ O /’ \ Céol Rain 7 Yes No
IOP‘/‘ —O,% lO{’\'\ Mild Rain 7.8 . . No Yes

@Kdnuggets: Clare Liu, Fintech industry




Measuring the Entropy of ‘Outlook’ variable

* Contingency table considering
the dependency between
“Played” and “Outlook”:

Played

Feature |values |Yes | No | Total
3 2 =

E(O)= -3 Rxen):

k<D |

k€403

oo O3

Dataset
Temperature Outlook Humidity Windy Played?
Mild Sunny 80 No Yes
Hot Sunny 75 Yes No
Hot Overcas t 77 No Yes
Cool Rain 70 No Yes
Cool Overcast 72 Yes Yes
Mild Sunny 77 No No
Cool Sunny 70 No Yes
Mild Rain 69 No Yes
Mild Sunny 65 Yes Yes
Mild Overcast 77 Yes Yes
Hot Overcas t 74 No Yes
Mild Rain 77 Yes No
Cool Rain 73 Yes No
Mild Rain 78 No Yes




IV
. "
| Q LSV" p
What is the entropy of “Outlook” wrt {Played” 2 ; 6\/‘/\

E(Played, Outlook) =7 =

C= 9N, b Eran € o Pl {



Estimate the entropy of “Outlook” wrt “Played”: E(Played, Outlook)

quyed

Here, E(Played, Outlook) is estimated looking at the mm-m

various possibilities for ‘outlook’, carrying the ‘Played’: sunny
outlook
overcast 4 0 4

rainy 3 2 5
E(Played, Outlook) = P(sunny) * E(3/5, 2/5) + P(overcast) *E(4/4,0) + P(rainy) * E(3/5,2/5)
= (5/14) * E(3/5,2/5) + (4/14) * E(4/4.0),+ (5/14) * E(3/5,2/5),

We see that:

E(3/5,2/5) = E(2/5,3/5) =- (2/5) log (2/5) — (3/5) log(3/5) = 0.97 bits
E(4/4,0) = 0.0 bits
And finally, that:
E(Played, outlook) 5/1’) *(0.97) + (4/14) * (0.0) + (5/14) * (0.97) = ﬂ 4"0‘?5S

APy, Mt TG = [0 Bk o




Decision Tree optimisation problem

- Minimize Entropy.

\\}
- Maximizing Information Gain (IG) minimized entropy

- This is an optimization problem




Entropy and Information Gain (1G)
MM-E_

- Information Gain (IG) is the informational

_ sunny 2
value of creating a branch on the outlook outlook . orcast 4 0 A
attribute ain 3 5 =
- The feature with the highest information gain ’
Total 10 4

is selected as a decision node
- We calculate the |G for each attribute, and
split on the attribute that gains us the most

information
1G (outlook) :@@M) — E(Played, outlook)

= E(4,10) — E(Played, outlook)
= 0.85 — 0.693 = 0.157 bits




Decision tree construction procedure:
Generating Classification Rules e e g e
* Divide the data using the splitting rule
) ) * Repeat
* For an |nput Instance: * Stop when final sets (leaves) are homogenous
‘ , ie. I
* If the outlook = ‘sunny’ and i SamEHas)

humidjty >”75 , then Decision Tree Diagram
class=“NQ”.

Root "~~~ 7777777 outlook?
* If the outlook=‘overcast’ then —
class= “YES” sunny rain
% 55 forth Splitting == overcast -
[ ' 7 A A
Decis'i};; humidity? Yes ) windy?
Node | f . A
‘ , <75 >75 Yes /' “\No
- Unnecessary structure can ‘clutter’ the tree
' ' ' '
- We ‘prune’ to eliminate unnecessary structure Yoy ;‘eos o B ves .,
Lea{

@Kdnuggets: Clare Liu, Fintech industry



Selecting an optimal size tree,  WaXi¥2 Before Pruring

\
mkﬂ»(ﬂ%
-Ibost pruning (backward prunihg):

- Build a_large tree that fully describes the

data
- Very complex model with zero training
error

- Start from the leaves and prune back by
erasing the rules with minimal (negative)
impact to the error/performance, based on
cross validation. X val\:'\'b

- Takes into account a combiration of attributes.
- Pre pruning (during construction of trees)

E;)\)&
Ak

Ny Wikipedia




Post-pruning operations

1. Subtree replacement (primary pruning operation)

i

- Select some subtrees and replace them with single leaves
- It may decrease the accuracy of the training set. However, it may increase the accuracy on
an independently chosen test set.

2. Subtree raising

_—

—

More complex than subtree replacement

Used in C4.5 decision tree building system

Time-consuming operation

May require reclassification of the samples at some of the affected nodes




Subtree Raising Operation

Assume that Cis the
most popular rule or
most popular sub-
branch of B (or the
majority child node of
B).

The entire subtree from node C
downward is raised to replace
the B subtree.

p—

overhead : reclassify the
samples at nodes 4 and 5

Popular rule mears
the rule that covers a
large subset of th
dataset

What if node ‘4’ was the majority child node of B?



E/\%\é\b ; CON\Q(AQMHP\L Mmoas X?%’m/g@} %\ﬁf‘_@
rap’Adg

Bagging/Bagged Decision Trees (Bp

regating)

- Hyperparameter in Bagging: the 't number of trees :“‘
- Algorithm: X

z
1.  Sample with Replacement, n training observations from tﬁéa'
p

Bagging

—_—
dataset for the training set

( r
. L. . 'z A M
2. Train a decision tree on the observations (‘ef. )V“\“" \(‘(\A,.sagging dodit

oo

Repeat 1) and 2) t times. This will result in t decision trees.

4. Awate the predictions from the t decision trees.

- Either take the majority vote or take the average if the
output of the decision trees are numerical values (such as
predicting temperature, price, etc.)

- Very similar to Random Forest algorithm

[——
‘ Phage

>0
N

NO YES

IVOM Score |v70MkECI
>10 >20 |
NO YES YES

Transp HEG

>2 ) >2

NO  YES NO  YES
(B). Decision tree model

Che, Dongsheng & Chen, Bernard. (2014). An Accurate Genomic Island

Prediction Method for Sequenced Bacterial and Archaeal Genomes.
Journal of Proteomics & Bioinformatics. 07. 10.4172/jpb.1000322.



Random Forest

- Unlike Bagged DT, a Random Forest has a hyperparameter that controls the
number of features to try when finding the best split (injects randomness)

- Feature bagging:
- Given g g'atas2t. D with p features, try only a random subset of features given
by size 3 or

- Randomness makes individual subtrees more unique and reduces correlation
between the trees

- Great overall performance.

X Gt




Comparison: Random Forests and Decision Trees

Random Forests
- Prevent Overfitting
Can make computations slower

Decision Trees
A Deep DT overfitts
Does not need additional overhead




Data exploration and a precursor to unsupervised learning

- Covered under pre-processing, we now revisit
Principal Component Analysis
- Use examples:
- Dimensionality reduction/data compression
- Data visualization and Exploratory Data
Analysis
- Create uncorrelated features/variables that
can be an input to a prediction model
- Uncovering latent variables/themes/concepts
- Noise reduction in the dataset




PCA example for preprocessing

- Principal Component Analysis (aka see below)

- Basic principle: Some axes of variability are more
important than others

- PCA s a dimensionality reduction technique used to
transform high-dimensional data into a
lower-dimensional representation

- Preserving the most ‘important information’

- Transforms a set of possibly correlated variables into
a set of linearly uncorrelated variables

- See “pca_example.ipynb” from L2

linkedin.com

Second principal component

e

First principal component

T T

PCA was invented in 1901 by Karl Pearson,™® as an analogue of the
principal axis theorem in mechanics; it was later independently
developed and named by Harold Hotelling in the 1930s."% Depending
on the field of application, it is also named the discrete
Karhunen—Loeve transform (KLT) in signal processing, the Hotelling
transform in multivariate quality control, proper orthogonal
decomposition (POD) in mechanical engineering, sinqular value
decomposition (SVD) of X (invented in the last quarter of the 19th
centurytt), eigenvalue decomposition (EVD) of X"X in linear algebra,
factor analysis (for a discussion of the differences between PCA and
factor analysis see Ch. 7 of Jolliffe's Principal Component Analysis),"2
Eckart—Young theorem (Harman, 1960), or empirical orthogonal
functions (EOF) in meteorological science (Lorenz, 1956), empirical
eigenfunction decomposition (Sirovich, 1987), quasiharmonic modes
(Brooks et al., 1988), spectral decomposition in noise and vibration,
and empirical modal analysis in structural dynamics.

Wikipedia




PCA on MNIST dataset

The MNIST dataset has 784 dimensions for each example - 784 pixels

Do we need all 784 dimensions?
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Principal Components don’t look intuitive

3333

>3 3 l 31

3713

Average 3

Does the dataset have a normal
distribution?

Whole dataset




Steps of a PCA calculation

Dataset D with size n and m features

1.
2,

Standardize: Z-score (z = (X - u) / 0) so has p=0, 0=1
Compute covariance matrix (relationship and the dependency)
> or correlation matrix (strength and direction)

Compute eigenvalues (A, ) and eigenvectors (e.) with the
covariance matrix )

Obtain the principal components: Pick the top x eigenvectors
corresponding to the largest eigenvalues in descending order
Project the data into eigenvectors: Reorient (transform) the
original data into the new coordinate system defined by the
selected principal components

Put differently we
maximize variance:
Project to the line that
minimizes variance or
Squared Sum of
deviations from the

mean




Recall: eigenvalues (A ) and eigenvectors (e)

y Eigf%icto B \ Eigf%icto
: : : e . e '
- Eigenvalues (A) determine the importance of Matrix Eigenvalue
eigenvectors (e) (i.e., components)

. . . Aei — )\67;

- Indicate variance in data (spread)
L . . Ae; — Mle; =0

- The direction of the principal components oriented

towards the larger spread of the data
det(A—AI) =0



Covariance Matrix )

X Y
X cov(X,X)  cov(X))
Y cov(Y,X) cov(YY)
Z cov(Z,X) cov(Z)Y)

cov(X,Z)

cov(Y,Z)

cov(Z,Z)

cov(X,Y) =

XXi—-X)(Y;-Y)
N




Using ) Find Eigenvalues

Solve the following given | is the identity matrix:

det(}; -AI) =0

- Example:

22[0?8 8:2]":[(1) 2]')’”:3 91]

- Filling in from above we have:

_[2-2
L -A '[ 0.8
- Using the determinant:
- det(, -AI)=0:(2—-1)(0.6 —1)-0.64=0
- This leaves us with the eigenvalues A, and A,:

1?—2.61+0.56 = 0 = 1={14,1,}={2.36, 0.23}

0.8
0.6 — A



Percentage of variance in the Principal Components

A
d /11.

=1

Percentage of Variance =

30~

Percentage of explained variances

Principal Components



Transformed features

- PCA provides the linear Transformation of the '}\15w feature = a;x; + apx
original features which will produce new features s
called principal components that are uncorrelated a® Xy
(perpendicular or orthogonal) 9 @ PCy = e11x;1 + €12%;
. \ . PCZ =€321X1 + €22X,
PCi=€11X1 + €12X2 + ... + €1pXn .. 39
PCs=€51X1 + €22Xy + ... + €5pX
2 2111 2242 2ntn o )
PCy = €1X1 + €2X2 + ... + €uXy, o ol o X1
- | o| ¢
- The transformation is done by calculating & e

eigenvalues and eigenvectors &



Find Eigenvectors

- Solve: ) % e; = }li * e

- Example, given A.and }:

T2
A = 2.36,% = [08
- We now have: '

[z 0.81,
0.8 0.6

- For e, leading to:
e11=22e,Pife;;=1,thene;; =22Fe; = lziz ]

-  Eigenvectors have to be unit length to avoid multiple solutions (i.e., || . [[=1)
- We divide e, by its length:

0.8
0.6

0.8 *[81'1

0.6 lews =236 %

e,=2.36% ¢, D [0?8 el |

€12

_ 1091 '
er = |gag | 1enll=

- Now do the same for e, etc...



Re-Orienting the Data using Principal Components

- Sort by which eigenvalue is largest, from before:
Ay > 4,0 236> 0.23

- If we only use one principal component:

er =[] = [oar |

- The transformed dataset becomes:
Transformed dataset = standardized D * Feature Vector”

The feature vector is the selected PC(s). In this case, itis e..



Adding more Principle components allows us to capture
more of the variance

Explained Variance Per Principal Component PC1 vs PC2 for MNIST Images

30
0.35

0.30

8

e o
N N
o 5]
1 1

o

bt

(0]
1

Variance Explained (%)

PC1

19% 17% 1.5% 1.5% 1.3% 1.2% 1.2% 1.1%

0 2 4 6 8 10 12 14
Principal Component

For PCA to work perfectly data must T T e T
have a normal distribution



Assumptions of PCA

- PCAis a linear dimension reduction technique. However, it can lead to poor results when
dealing with non-linear structures.
- PCA must be performed with standardized data (mean =0, Variance = 1).
- Just one PCA plot should be generated by considering the maximum variances within the
alributes. It preserves large pairwise distances.
- It doesn’t work well when the pairwise distances are small
- PCA can not preserve local distances in data.
- Only global distance (large distances) are preserved.
- PCA transform the data into a new set of orthogonal components, ensuring that the first
component aligns to the maximum variance in the dataset, and subsequent components align
to the next maximum orthogonal variance, and so on.



Nonlinearity and PCA




PCA relationship to Neural Networks

- PCAs closely related to a particular form of neural network
- An autoencoder is a neural network whose outputs are its own inputs
- The goal is to minimize reconstruction error

L I I I I )



