ECS171: Machine Learning

L14: Unsupervised
Learning |

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria



Intended Learning Outcomes

- Appreciate and describe the difference between supervised and unsupervised learning

- Describe different unsupervised types (Latent, Association, Clustering)

- Describe generally different types of clustering methods and how they relate to each other
and the data-distributions

- Describe and apply@ clustering and @hns clustering

- Describe the importance and features of various distance metrics and where each is
appropriate and what assumptions are made (e.g. linearity)

- Describe hierarchical and density based clustering
— —————



~7UnsuEervised
- Nolabels

- ldentify structures
- No explicit
feedback

Supervised
- Labeled data
- Decision boundary
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Unsupervised learning

Tasks to consider:
- Reduce dimensionality
- Find cluﬁsters
- Model data density
- Find hidden causes

Key utility:
- Compress data
- Detect outliers
- Facilitate other learning

R. Grosse



Unsupervised aPproaches

- Latent variable models:
- Assume data depends on some latent variables that are never observed. Such models
are called latent variable models
- Can be used to approximate high dimensional data using lower dimensional form
- Examples: PCA and Autoencoders
- Association
"= Checks for the dependency of one data item on another data item and maps
accordingly
- Tries to find some interesting relations or associations among the variables of dataset
- Based on different rules to discover relations between variables in the database
- Used extensively in retain, e.g., so that it can be more ‘profitable’

- Clustering (focus today) ,aw%.‘ OLA&\::‘ /\wh%\«}f)

- Partitioning of the data

- It's well-suited for processes such as customer segmentation, exploratory data
analysis or image recognition
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Clustering

Unsupervised learning is a method used to identify natural groupings within unlabeled and
unstructured data

It clusters objects based on their similarity, grouping together objects that are more similar to each
other than to objects in other clusters.

Parameters to create maximally homogeneous groupings:

- Parameter and unsupervised methodology choice

Goal: To model the underlying structure in the data in order to learn more about the data



Clustering

Grouping N examples into K clusters one of canonical
problems in unsupervised learning
Motivation: prediction; lossy compression; outlier detection
We assume that the data was generated from a number of
different classes
The aim is to cluster data from the same class together.
- How many datsav® M& OMK_TI,
- Why not put each datapoint into a separate gheagX
What is the objective function that is optimized by sensible

clustering? L
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Types of clustering methods (non-exhaustive)

Clustering

o

Hierarchical
v

P’

\

Partitional

N

Single Average Complete Square Graph | Mixture Mode
linkage linkage linkage Error Theoretic Resolving Secking
K means | — —~ ——. | EXpectation
Maximization




What is the objective functlop that is optimized by sensible clustering?

L:} -\earn
g’ MinipetthRMsansAffinityPropagation  MeanShift ~ Spectrg tering Ward Agglomegatireeiugtering DBSCAN

Ao,




Clustering

- Assume the data {x(1), . . ., x(N)} lives in a Euclidean space, x(n) € O

- Assume the data belongs to K ¢lasaes (patterns) 0‘,,»5!;“;5
- How can we identify those classes (data points that belong to each class)?




K - sy
Clustering
cheest |1 k=2

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
- Assignment step: Assign each data point to the closest cluster
- Refitting step: Move each cluster center to the cemexOigrenty of the data assigned to it

Refitted
means

° Assignments




Figure from Bishop Simple demo: http://syskall.com/kmeans.js/



Cluster Centroid (Middle of a cluster)

- Cluster centroid y is considered as a measure of cluster location
- It represents the center point of a cluster
- Centroid is the multi-dimensional average of the cluster
- Each centroid represents the "average observation" within a cluster across all the attributes in

the analysis
GL =
x(l)Ec] ,.l—"—-——"'—'_‘

- Example:  X={(80, 56), (75, 53), (60, 50), (68,54)} , X € ¢;,

iy = (80+751-60+68 ’56+53;50+54 )= (71.75, 53.25)




k-Means

Uses ‘euclidean’ distance metric

Is ‘exclusive’ clustering

What is actually being optimized?

¥z

=2

(" K-means Objective:
Find cluster centers nd assignment 0 minimize the sum of squared
distances of data points {x(")} to the|r assigned cluster centers

4 = 0,5, Bl () g, ZS@\W —p

s.t. Zr,f") =1,Vn, where (") € {0 13, Vk n

\Where r,E ") =1 means that x(" is assigned to cluster k (with center my)

~N

Optimization method is a form of coordinate descent (‘block coordinate descent’)

- Fix centers, optimize assignments (choose cluster whose mean is closest)
- Fix assignments, optimize means (average of assigned data points)




K-means

Distance function

F= Z D@ = gy

j=1xec;

cluster guess data

\
data point centroids

Minimize objective function

Setting K the number of
clusters

Stochastic first guess
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Euclidean ‘Distance’

- Euclidean Distance is the length of a
line segment between two points in the
Euclidean space.

d(p,q)” = (@ —p)* + (@2 — p2)°

II-_' : li

d(p.q) S—
p .

(1] P

P q1

d(p.q)=\/(p,-q,)’+(p2-q;)"+ ver w(p-q )i+ e +(p-q).
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k-Means: Iteration 1 -1
- Assumef_Z_'

- Choose two data points (d2 , d4) randomly
and use as the centroids of two clusters

- Calculate the Euclidean distance of the next
data point (say d1) from each of the two
cluster centroids

- The new data point joins the cluster with the
minimum distance.

deuctidean (1, d1) = \/(1 —2)24+ (3-0)2
dEuctidean(ﬂl: dl) = 3.16

deuctidgean (2, d1) = \/(2 —2)2+(2-0)?
dEuclidean (ﬂz; dl) = 2

min(dEuclidean (ﬂli dl)' dEuclidean (“2’ dl)) =2

x1

o~ d1

W .

x2

h/\l/

O = N W & U OO N

Dummy Dataset Distribution

d5
e
d3
©
d2 ¢4
7 d4 p,

®
d1,

1 2 3 4

d1 joins the cluster with centroid ,.

BN W =N

X2

x1

N WO



k-Means: lteration 1

- Since the shape of the cluster with centroidm
U, has changed, a new centroid is calculated

242 042
Uy = (T ,T)=(2,1)

- Repeat the same process for the nex
point (i.e. d3)

deuctidean (1, d3) = \/(1 —3)2 + (3 — 5)2
deuctidean(#1, d3) = 2.83

Agyuctidean (U2, d3) = \/(2 —3)2 + (1 -5)2
Agyciigean (M2, d3) = 4.12

min(dEuclidean (ﬂl: dg): dEuclidean (#Zr d3)) =2.83

1

x2

© = N W & Ul O N

x1
di
d2
d3
d4
d5

Dummy Dataset Distribution

d5
@
d3
@
dz
v/ d4
@
o K2
dl ®
i 2 3 4

d3 joins the cluster with centroid g,.

BN W =N

DN U1 W O

x1



k-Means: lteration 1

- Since the shape of the cluster with centroid
M, has changed, a new centroid has to be

calculated for this cluster.

_ 1+3 345
Updating sy : iy = (=, ) = (2,4)

- Repeat the same process for the next data
point (i.e. d5)

Aeuctidean (1, d5) = \/(2 —4)2 4+ (4 —-6)2
dEuclidean(ﬂlf dS) = 2.82

dpuciidean (U2, d5) = \/(2 = 4)2 4+ (1.~ 6)>
dEuclidean(HZ:dS) = 5.38

min(dEucLidean(ﬂlr d5), dguciidean (H2; dS)) =2.82

X2

o = N W & U O N

di
d2
d3
d4
d5

Dummy Dataset Distribution

ds
@
Il1d3
H @ ?
L J
.d2
d4
®
o 12
di,
1 2 3 4

d5 joins the cluster with centroid gi4.

x1

x1

BN W RN

X2
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k-Means: lteration 1

- Since the shape of the cluster with centroid
U, has changed, a new centroid has to be
calculated for this cluster.

_ 1+3 345
Updating iy : i = () = (2,4)

- Repeat the same process for the next data
point (i.e. d5)

Aeuctidean (1, d5) = \/(2 —4)2 4+ (4 —-6)2
dEuclidean(ﬂlf dS) = 2.82

dpuciidean (U2, d5) = \/(2 = 4)2 4+ (1.~ 6)>
dEuclidean(.“Z:dS) = 5.38

min(dEucLidean(:ulr d5), dguciidean (H2) dS)) =2.82

X2

o = N W & U O N

Iteration 1 complete
1+43+4 345+ 6

Updating u; : 1 = ( " % ) =(2.67,4.67)

dli
d2
d3
d4
d5

Dummy Dataset Distribution

ds
@
Il1d3
H @ ?
L J
.d2
d4
®
o 12
di,
1 2 3 4

d5 joins the cluster with centroid gi4.

x1

x1

BN W RN

X2

DN N WO



k-Means: lteration 2

In iteration 2, the distances are calculated
from the new centroids (i.e., p, and )
M, = (2.67,4.67)

u,=(2, 1)

dl
d2
d3
d4
d5

dEuclidean (luj» di)

Euclidea
distance
from p4q

n

4.7
237
0.46
2.76
1.89

Euclidean
distance

from u,

1
2.24
4.13

1
9.39

x2

o = N W &~ U O N

x1
d1
. d2
d3
.d4
d5

Dummy Dataset Distribution

BN W R N

X2

DN U WO



k-Means: lteration 2 @

d2
- Initeration 2, the distances are calculated d3
from the new centroids (i.e., p, and ) ,da
ds
g =, 22)=(3.5,5.5) |
2+1+2 0+3+2
= ‘ =(1.7,1.7 : S
gz =( 3 3 1=\ )dEucgidean(#j' dl) Dummy Dataset Distribution
¢ d5
6 U1
Euclidean Euclidean 2 | SR f
distance distance 4 e
from pq from py ’ ? ., %
2 2 ®
dl 4.7 1 .
d2 2.37 2.24 0 dig
d3 0.46 4.13 ’ : : ’ '
d4 2.76 1

d5 1.89 5.39

BN W =N
N U1 WO



k-Means: Iteration 3 [clusters are now gxtiuiive]

In iteration 3, the distances are calculated
from the new centroids (i.e., p, and )

M1=(3.5|5.5)
Ho= (1.7, 1.7!

di
d2
d3
d4
d5

dEuclidean (ﬂjr di)

Euclidea
distance
from g4

n

5.7
3.53
0.7
3.8
0.7

Euclidean
distance

from g,

1.7
1.47
3D
0.42
4.9

2

o = N W &~ U O N

AA,,A,.\L,

Dummy Dataset Distribution

d2
®

25

dl

d2
d3
da
ds

d5
Q"

x1

BN W R N

X2

DN U WO



K-means for Vector Quantization

- Given image, construct “dataset” of pixels represented by their RGB pixel intensities
- Run k-means, replace each pixel by its cluster center

K=2 { C Original image

Figure from Bishop



K-means for Image Segmentation

- Given image, construct “dataset” of pixels represented by their RGB pixel intensities
- Run k-means (with some modifications) to get superpixels




Fuzzy C-means (FCM)

- Not exclusive clustering
- Data-points can belong to several
clusters
- It carries the notion of fuzzy partitions where
the probability of a data point i belonging to
a cluster j (i.e. probability of membership) is a
w; s.tO SWU <1.

T
0025



Fuzzy C-means Clustering™

Assume: 0> ‘l/ Z=!
Data ¥ = . TR 8 01 1 .09 Z-=)
ata X = {xq, ..., x,}; size of the dataset:n ol o1 (97 o1 Z=\
* Clusters = {cy, ..., ci } ; number of clusters : k 2 W )

Probability of membership of data point x; to cluster ¢; is w;; such that 0 <
WUS 1.

Example: suppose X = {x;,x5,x3}, C=k =4

Condition:
1. All the weights for a given data point x; should add up to 1: Z?zl wii =1

2. Each cluster Cj with non-zero weight, contains at least one data, but does not contain all
data with a weight of 1: 0 < Y7L, w;; <.



|
Fuzzy C-Mepns cl tering (FCM) Al

s
Input : Data, k,  Output: w;;,¢j, 1 <j<k,1<i<n
s Inltlallzatlon Randomly select values for all @ t. Z] -1 Wi =1 w“goL

Z:l-— %4’ eOA \
2., Compute centroids: @ ; if p=0,, itis k-means , or else if p> 1, then

s'u'w‘ nt

we do more fuzzification. Lets say p = 2. p serves as the fuzzifier.

(1/dist(x;,c;)) PT

2

3. Update the fuzzy-pseudo partition, i.e., w;; : wU ifp=2,

B — ~ Yk i(1/dist(eicg))P™ pi
(1/dist(x;,.c; J’ )
Yq=1(1/dist(xicq)) t/.,, /.5 ‘§‘3‘E‘5— Yy DR wliNist(x, ¢)
4. Repeat ste —VﬁLdoesn hange. ) FiS
CV{’\T /\MA"’







Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

Output: wij,c;,1<j<k,1<i<n

1.

Initialization: Randomly select values for all w;; s.t.
W=
j=1 Wij =

T »
: i=1 Wi¥Xi
Compute centroids: ¢;= — — p=2.
J n ¥
i=1 Wi

Update the fuzzy-pseudo partition, w;; : w;j =

—, if p=2, then Wij = Cu/distluiep)

(1/dist(x;,cj)) P71
& S W
Sk (1/dist(xpcq)PT Yg=1(1/dist(xi.cq))

Repeat step 2 and 3 until w;; doesn’t change (convergence).

Data
| att1 |ati2
x1 1 2
X2 2 3
x3 9 4
x4 10 1

Fuzzy C-Means clustering (FCM) : Example

Step 1: Randomly initialize weights

x1
X2
X3
x4

4

.88
41
27

6

22
.59
73



Fuzzy C-Means clustering (FCM) : Example

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

Output: w;;,c;, 1< j<k,1<i<n TrORT .
' Step 1: Randomly initialize weights

1. Initialization: Randomly select values for all w;; s.t.

x1
X2
X3
x4

Z§=1 wij =1
Pt pr
2. Compute centroids: = ,L,;l M‘jpl ;p=2
=1 ij
3.  Update the fuzzy-pseudo partition, w;; : wy; = Step 2:
1/dist(x;c;)) P~1 | 1/dist(x;c; n 2 o
P i p =2, then wyy =2E( (l/dfstl(xj')i ) =19 = =t i1 j=2 =P c,=
TK 1 (L/dist(xy,cq)P e J= L n T C2=
4, Repeat step 2 and 3 until wy; doesn’t change (convergence). LSl
Data
x1 1

2
x2 2 3
x3 9 4
x4 10 1

i=
n
=1

4 6

88 .12
A1 50
2773

i=1 Wiz Xi
2
i2



Fuzzy C-Means clustering (FCM) : Example

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

x1 4 .6
Output: wij,c;,1<j<k,1<i<n TrORT .
S Step 1: Randomly initialize weights x2 .88 .12
1. Initialization: Randomly select values for all w;; s.t.
o x3 a1 .59
Yj= wiy=1
o x4 |27 .73
: i=1 Wi¥Xi
2. Compute centroids: = <R WP ;p=2.
= if
3. Update the fuzzy-pseudo partition, w;; : wy; = Step 2:
ist(xp,c;)) P ist(x;.C; n 2
(1/dist(x;cj)) —,ifp=2, then w;; =§F%% 1 _ i=1 Wilxi 9 9 _ ?=1 wiZin
T (1/dist(xieq))PT R =1 1= n o 7 )= C2= ~m e
= [ =1 ""12
4. Repeat step 2 and 3 until w;; doesn’t change (convergence). = ’ .
¥ T
(.4)2+(.88)2+(.41)2+(.27)2 = 1.18 (.6)2+(.12)2+(.59)2+(.73)2=1.25
Data
x1 1 2
X2 2 3
x3 9 4
x4 10 1



Fuzzy C-Means clustering (FCM) : Example

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

x1 4 .6
Output: wij,c;,1<j<k,1<i<n TrORT .
S Step 1: Randomly initialize weights x2 .88 .12
1. Initialization: Randomly select values for all w;; s.t.
o x3 a1 .59
Yj= wiy=1
o x4 |27 .73
: i=1 Wi¥Xi
2. Compute centroids: = <R WP ;p=2.
= if
3. Update the fuzzy-pseudo partition, w;; : wy; = Step 2:
ist(xp,c;)) P ist(x;.C; n 2
(1/dist(x;cj)) —,ifp=2, then w;; =§F%% 1 _ i=1 Wilxi 9 9 _ ?=1 wiZin
T (1/dist(xieq))PT R =1 1= n o 7 )= C2= ~m e
= [ =1 ""12
4. Repeat step 2 and 3 until w;; doesn’t change (convergence). = ’ .
¥ T
(.4)2+(.88)2+(.41)2+(.27)2 = 1.18 (.6)2+(.12)2+(.59)2+(.73)2=1.25
Data
x1 1 2
X2 2 3
x3 9 4
x4 10 1



Fuzzy C-Means clustering (FCM) : Example

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

x1 4 .6
Output: w;;,c;, 1< j<k,1<i<n TrORT .
A Step 1: Randomly initialize weights x2 88 .12
1. Initialization: Randomly select values for all w;; s.t. X3 41 59
b wij =1 : :
! o xa |27 73
2. Compute centroids: ¢;= ;1 M‘jpl p=2.
=1 ij
3.  Update the fuzzy-pseudo partition, w;; : wy; = Step 2:
(1/dist(x;,cj)) P71 = th i (1/dist(x;c))) an qu & " A W2 X;
x§=1(1/aisc(xi,cq))7ﬁ'l p =2, then w; Tk (1/dist(xicq)) j=1=> 1= lnl J l, J=2 -> Cr= —1;11 1:/2_2 L
4. Repeat step 2 and 3 until w;; doesn’t change (convergence). = /u" 1—1_;‘2__“‘
¥ T
(.4)2+(.88)2+(.41)2+(.27)2 = 1.18 (.6)2+(.12)2+(.59)2+(.73)2=1.25
Data
T (4051 (88022 HAUSHZIX10_s7 _, .
AN 2 ‘3L 1.18 118
X2 2 3 (4)2x 2 +(.88)2x 3 +(.41)2 X 4+(.27)2x 1 _ 339 _, oo
x3 9 4 ( C}.Z > 1.18 g
x4 10 1

centroid ¢;= [ ¢y1, ¢15] =[3.38,2.88] 2 = [cyq, €22]=[7.02, 2.14]



Repeat

Fuzzy C-Means clustering (FCM) : Example

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

Output: wij,c;,1<j<k,1<i<n

Euclidean distance

o Determine new w. with new centroids x1 254 6.03

1. Initialization: Randomly select values for all w;; s.t. 1) E i
Z’.f= wi=1

= P centroids ¢;= [ ¢14, ¢15] = [3.38,2.88] xa |88 2

2. Compute centroids: ¢;= UL p=2. €2 = [ €yq, €35]=17.02, 2.14] x3 573 271
i=1Wij

3. Updatethefuzzy-pseudo partition, w;; : wy; = Step 3: x4 6.86 3.19

(1/dist(xpc )P - (udist(xic)) TSt

—, if p=2, then Wi; —m _ (1/dis (xl;C]))

Sk (1/dist(xicg)PT U yk_ 1/ dist(xicq))

4.  Repeatstep 2 and 3 until w;; doesn’t change ( ) Upedted weighte
A epeat step 2 and 3 until w;; doesn’t change (convergence).
o amsteney __apsy o IHEEEE
Data 117 (1/dist(xq,00)+(1/dist(x1,¢5))  (1/2.54)+(1/6.03) | 3
S : (1/d£sc(x1,cz')) - (1/6.03) -3 x2 79 21

-mm 12 7 (1/dist (xq,01)+(1/dist(x1,¢2))  (1/2.54)+(1/6.03)
x1 1 7) x3 32 .68
x2 2 3 x4 32 .68
x3 9 4
x4 10 1



Repeat

FCM: Final Weights after a few iterations

Input : Data :{(1,2), (2,3), (9.4), (10,1)}. , k=2,

Output: wij,c;,1<j<k,1<i<n

Finally, report the sum of squared deviations from the

1. Initialization: Randomly select values for all w;; s.t. .
Yo wi=1 centroid: Final weights
2. Compute centroids: ¢j= L p=2. -nnm
i=1 Wi
3. Update the fuzzy-pseudo partition, w;; : w;; = k n P g . i
(l/dist(xl_ﬁj)),,é o 4 (ll/dist(xi,cj)) Zj=1 Zl=1 WijdlSt(xu C]) cal |t [l [
T, ITPp=24,then Wy = sp——————-—
Sk (1/dist ey eq)PT T Zge(/distxic)) P>1 x2 .94 .06 cl
4. Repeat step 2 and 3 until w;; doesn’t change (convergence). %3 17 cel |
Data ¥ido A8 B2 ed
-xl ml mz By tuning p and k values, Sum of the squared deviations
o= from the centroid of clusters change.
x3 9 4
x4 10 1 Ideal case: when the Sum of the squared deviations from

the cluster centroids are minimized.






Distance Metrics are key to clustering results

- Distance Measures

Define how the similarity of two elements (x,y) are calculated
Determines the shape of the clusters

- Distance Measure Techniques

Euclidean Distance, used in common clustering algorithms (k-Means etc)
Manhattan Distance

Correlation-based Distance : example is Pearson’s correlation (sensitive to outliers),
Spearman Correlation Distance (not sensitive to outliers)

Hamming Distance, used in information retrieval

Cosine Distance (vector space model)



Manhattan Distance

- Manhattan distance is the distance between two points 5: (73)
in a grid based on a strictly horizontal and/or vertical
path

- Along grid lines, not diagonal distance
- The Manhattan distance is the sum of the absolute /

differences between the coordinates of the points along

each dimension: /
(I\Lm' .lll.m( x‘ Y) l x i Y ] I '\.l ' }'I | + | '\..’ ) }'.‘ | il /
L

-  Example A and B: L

A: (2,5)

Manhattan distance = |2-7|+[5-3|=5+2=7



Hamming Distance

- The Hamming distance between two strings of equal length is the number of positions at
which the corresponding symbols are different

Two example distances: 010 3 bit t;inary
100—011 has distance 3; ;ﬁ'gﬁ] gor
010—111 has distance 2 distance

000

- The minimum distance between any two vertices is the Hamming distance between the two
binary strings



Cosine distance

- Used in text and image processing applications
- The cosine similarity is the cosine function of the angle
between the two feature vectors in a multidimensional

space:

Cosine Distance = 1 — cos(60)

i=14iBi
R4 (S0, B2

cos(B) =

X,

A GBS

Cosine Distance/Similarity

~

\

Item 2

Item 1

Cosine Distance

X,



Pearson's Correlation coefficient

The Pearson correlation coefficient (r) can be used in clustering as a similarity or distance
measure between data points

- Itis the measure of the linear relationship between two continuous variables.
- Values from -1 to +1

- +1 indicates a perfect positive linear correlation
- -1 indicates a perfect negative linear correlation
- 0 indicates no linear correlation between the variables

- o A A

r= 0.4 : r=0

»
»

Y
Y

Positive Correlation No correlation Negative



Pearson's Correlation coefficient measures linear relations
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Pearson's Correlation coefficient measures linear relations

Equation: X:[10, 20, 30, 40, 50], Y: [15, 25, 35, 45, 55]

1. Calculate the mean of X (X) and the mean of Y (Y).
(V. PV T * X=(10+20+30+40+50)/5=30
. m(Xi-X)Y-Y) e ¥=(15+25+35+45+55)/5=35
\/Z‘?—l(*xi o X’)'—’\/Z?_I(K -Y)? 2. (Cadlcul)ate the deviations from the mean for X (Xdev) and Y
Ydev) :
* Xdev: [-20, -10, 0, 10, 20]
n: number of samples * Ydev: [-20, -10, 0, 10, 20]
3. ggICL;Iate the sum of the products of the deviations (Xdev *
ev):
« Y(Xdev * Ydev) = (-20 * -20) + (-10 * -10) + (0 * 0) + (10 * 10) +
(20 * 20) =900
4. Calculate the sum of the squared deviations for X
(2(Xdev~2)) and Y (Z(Ydev”2)):
¢ Y(Xdev”2) =400+ 100+ 0 + 100 + 400 = 1000
* X(Ydev~2) =400+ 100 + 0+ 100 + 400 = 1000
5. Calculate the square root of the product of the sums of
squared deviations:
« J(Z(XdevA2) * I(YdevA2)) = /(1000 * 1000) = 1000
Calculate the Pearson correlation coefficient (r) :
* r= Z(Xdev * Ydev) / \/(E(XdevA2)  Z(YdevA2)) = 900 / 1000 =
0.9

o




k-Means and Fuzzy c-means make strong assumptions
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Partitional (e.g. k-Means) vs hierarchical

K-means clustering specifically tries to put the data into
the number of clusters you tell it to.




Hierarchical clustering

Hierarchical clustering is one of the popular and easy to understand clustering technique. This
clustering technique is divided into two types:

1. Agglomerative: Initially all data points are one cluster which we merge iteratively
2. Divisive: Initially there is only one cluster which we subdivide

Linkage criteria, how distances are measured, are key here also



Hierarchical Clustering: Distance

We may define as “distance” the:

T
* Minimum distance between elements of each cluster é : S
(single-linkage clustering) el 2

*Maximum distance between elements of each cluster
(complete-linkage clustering)

*Mean distance between all elements in each cluster
(average-linkage clustering)

(o )
*Distance between the centroids of each cluster (centroid- " Y
linkage clustering) S i ®. |

@ lliasTagkopoulos



Hierarchical clustering: Agglomerative
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Agglomerative Hierarchical Clustering Technique



Hierarchical Clustering: Dendrograms




Example: Hierarchical gene-expression analysis

The columns
represent different

samples
1
e RS AR I
+ i S B ; ; ;
; {; : SHES TR s B Hierarchical clustering orders the
by R § LR TR VL S
i ‘--;: S RE | 'j i rows and/or the columns based
75 o 4 : "’i: pr. on similarity
The rows represent AR O ety o g
T TR A W A
measurements from - = &% S g | LY
- 4 ."’. & o suip® --:” (X4 .! : 7. H 1
different genes. By | ity s This ma!<es |t_ easy to see
R T Ul ﬁ o correlations in the data
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‘:lb‘n_s; ‘. ‘_" - r.!_!
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ﬁ .‘;i. ‘m' ;: ".:‘ .-n
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Red usually stands for high expression of gene.
Blue/Purple usually stands for low expression of gene.



Heatmap with hierarchical clustering

The heatmap without The heatmap with
hierarchical clustering hierarchical clustering
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The rows and columns of the heatmap are reordered to place similar data points closer together



Hierarchical gene-expression analysis: Distance metric
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Here’s a heatmap that
compares the furthest points
in the clusters.
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Here’s a heatmap that
compares the average points
in the clusters.
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Here’s a heatmap that
compares the closest points in
the clusters.



Density based clustering

- Most popular: Density-based spatial clustering of applications with noise (DBSCAN)

- Non-parametric algorithm (no ‘k to choose’):
- Given a set of points in some space, it groups points that are closely packed together

- Marking points as outliers that lie alone in low-density regions
- Nearest neighbors are ‘too far’ away



Density-based spatial clustering of applications with noise
(DBSCAN)

- Set: Eps and minimum points
(MinPts)

DBSCAN(dataset, eps, MinPts){
# cluster index
c=1
for each unvisited point p in dataset {
mark p as visited
# find neighbors
Neighbors N = find the neighboring points of p

if |N|>=MinPts:
N=NUN'
if p' is not a member of any cluster:

add p' to cluster C

stackexchange.org






Choosing a clustering algorithm appropriate for the data...

MiniBatchKMeansAffinityPropagation =~ MeanShift =~ SpectralClustering Ward AgglomerativeClustering DBSCAN Birch Gaussj




