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Intended Learning Outcomes

- Describe the difference between internal and external validation
- Describe the important components of internal validation and how various methods use
different aspects of cluster properties
- Describe and apply the Silhouette and ‘elbow’ methods
- Critically evaluate the underlying assumptions of the methodologies
- Describe the approach of external validation, it's benefits and shortcomings.
- Describe the Jaccard score
- Describe and apply information Theoretic aspects of model selection
- Describe the Association Rule type of Unsupervised Learning
- Know different ‘rules’ and appreciate different algorithms



Validation and model selection

- Evaluate the ‘goodness’ of the results to compare:
- Clustering methods (k-Means, Fuzzy c-means, DBSCAN etc..), cluster sets
- Compare the results of analysis to externally known results
- Parameter tuning e.g. determine the ‘correct’ number of clusters
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Measuring Cluster Quality and Validity

Internal Index -

- Validate without external information
- With different numbers of clusters
- Solve the number of clusters

External Index

- Validate against ‘ground truth’

- Compare two clusters (how similar?)
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- Information criteria: Akaike and Bayesian (among many)



Internal quality indices

- Compactness/Cohesion

How closely related are the objects (data) in a cluster?

- Separation

How distinct or well-separated is a cluster from the other clusters?

- Examples include:
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- Most metrics make strong statistical assumptions about the data and cluster shapes



The ‘elbow’ method

- Line plot between cluster number (K) and the
inertia/distortion metric from the data.
- There is a marked reduction in variation with K =3, but
after that, the variation doesn't go down as quickly
- Inertia:
- Inertia is the Sum of squared distances of samples
to their closest cluster center
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- Distortion: =0
- The distortion score is computed as the average of
squared errors/distances (SSE) of samples to their

closest cluster center
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Distortion and inertia example
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Silhouette score (S)

Calculated for each datapoint, varies from -1 to 1

A measure of how similar a data point is to its own cluster compared to other clusters

Mean intra-cluster distance = Mean distance between the data point and all other
data points in the same cluster. (measure of cohesion)

Mean nearest-cluster distance = Mean distance between the data point and all other
nearest cluster(s) that the sample is not a part of. (measure of separation)

mean nearest clusters distance — mean intra cluster distance

max( mean nearest clusters distance ,mean intra cluster distance)




Silhouette Score
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Silhouette score

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

The silhouette plot for the various clusters. The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters.
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The visualization of the clustered data.
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Different metrics give different answers

Often, different metrics give different suggestions for the same data and algorithm

This is a red flag that the method should be discarded

Silhouette Coefficient Davies Bouldin Score Calinski Harabasz Score



Problem with non-convexity

For the internal validation methods to work perfectly one
requires a convex distribution

If the area is concave, meaning there is a ‘gap’ where
the cluster is not present, but the distance between two
points would be measured through the gap

With a concave function, our metrics of compactness
and separation do not work

convex

concave



External Validation

Compare against ground truth

- E.g. externally provided class labels
- Scores:

Homogeneity score
Completeness score
Rand Index

F-score

Jaccard

Many more...




Jaccard Score

J = Jaccard distance

A =set 1 (e.g. cluster 1) |AnB| |AnB|

B = set 2 (e.g. cluster 2) J(AB) = =
[AuB|  |A[+[B] - [AnB
The Jaccard index, or the Jaccard
similarity coefficient, used for gauging the
similarity and diversity of sample sets.



ase study: Nutrients in the ocean
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Case study: Nutrients in the ocean

- Clustering the data gives confusing results.
- What is happening?

Silhouette Coefficient Davies Bouldin Score Calinski Harabasz Score
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External validation example

- The ML method was ‘only’ able to find hot and cold waters, missing out the ‘interesting’
structure

- Manifold approximation illustrates the highly non-convex data structures highlighting why the
methods failed

- Here, visual inspection of the manifold and of the clusters in physical space highlights the
failure




Information criteria: AIC/BIC

The ‘information’ content, how well we fit the data, is
used to estimate how ‘good’ a model is

Akaike information criterion (AlC) (Akaike, 1974) is a
technique based ‘fines’ for in-sample fit to estimate the
likelihood that a model will predict future values

~

AIC = 2k — 2In(L)
BIC = K'In(n) — 2In(L),

where n is the number of datapoints and L is the likelihood:
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- A good model has minimum AIC among all the £L=n¥,
other models

Bayesian information criterion (BIC) (Stone, 1979)
measures the trade-off between model fit and
complexity of the model

The AIC and BIC use the likelihood



Information criteria: AIC/BIC

A lower AIC or BIC value indicates a better fit

Ideally, the AIC should asymptote and the BIC go up as the model complexity increases beyond
the ideal

There is not always a ‘perfect fit’
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Association Learning

Dig into large amounts of data and discover interesting
relations between attributes

- Market Basket Analysis, Intrusion Detection, Web
Usage Mining, medical diagnosis etc.

For example, you find out that people who purchase milk
and bread, also tend to purchase butter.

- Target advertisement
- Place products in store
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Association Learning rules

- Support: How popular is an itemset. Used to find the frequency of a certain itemset appearing in the dataset.

Support(A) = Frequency(A)

- Confidence: How likely item B is purchased when item A is purchased, expressed as (A -> B).

) S tHA — B)
Confidence(A — B) = M
Support(A)

- Lift: How likely an item A is purchased while controlling how popular item B is.

Con fidence(A — B)
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Association Learning algorithms

- Apriori: This algorithm uses frequent datasets to generate association rules.

- Apply an iterative approach/level-wise search where k-frequent itemsets are used to find k+1 itemsets

-  Uses a Breadth-First Search algorithm and Hash-Tree to calculate the itemset efficiently
- Apriori algorithm works in a horizontal sense imitating the Breadth-First Search of a graph
- Eclat: Eclat algorithm stands for Equivalence Class Transformation.
- The ECLAT algorithm works in a vertical manner just like the Depth-First Search of a graph
- Has faster execution than Apriori Algorithm
- F-P Growth: The F-P Growth algorithm stands for Frequent Pattern
- Improved version of the Apriori Algorithm
- The FP-Growth Algorithm is an alternative way to find frequent item sets without using candidate generations,
thus improving performance.
- It uses a Divide-and-Conquer strategy
- The core of this method is the usage of a special data structure named Frequent-Pattern Tree (FP-tree),
which retains the item set association information. The purpose of this frequent tree is to extract the most

frequent patterns.



