ECS171: Machine Learning

L3 Validation of
hypotheses: regression

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria



Intended Learning Outcomes

- Describe bias and variance, as well as the bias-variance trade-off

- For regression models: Describe difference in the expression for quantifying errors and
calculate these for data

- Describe mathematically and apply, for linear regression and multivariate linear regression
the analytical (Ordinary Least Squares) and numerical (Gradient Descent) methods for
determining fit

Rec. reading: B3.1+R 1-7,R3.4.6

Resource: matrix_OLS _NYU_notes.pdf



Indicate the fit of a trained model and the
causes of poor performance in machine
learning.
Goal of training a model: Obtaining a
generalized model to perform well on
unseen data.
Overfitting:
- Afunction (ML model) is too closely
aligned with a limited set of data
Underfitting:
- Afunction (ML model) is not aligned with a
limited dataset
Model complexity:
- As simple as possible, but no simpler

Hypothesis testing: Goodness of fit

Piled Higher and Deeper by Jorge Cham
CORE PRINCIPLES IN RESEARCH

OCCAM'S RAZOR

"WHEN FACED WIMH TWO POSSELE
EXPLANATIONS, THE SIMPLER OF
THE TWO 1S THE ONE MOST
LIKELY TO BE TRUE.”

OCCAM'S PROFESSOR

“WHEN FACED WITH TWO POSSIBLE WAYS OF
DOING SOMETHING, THE MORE COMPLICATED
ONE S THE ONE YOUR PROFESSOR WILL
MOST LIKELY ASK You To Do.”
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title: "Core Principles"” - originally published 10/12/2009




A model is a function that represents the data
Model
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Classification Regression

Hypothesis: If | fit an ML model it will mimic
the underlying ‘model’ the data came from

simplilearn.com




Predicting continuous outputs: Regression

e Samples
1.5 - —— True function

We need:

- Features (inputs): we'll call these x (or x if vectors)

- Training examples: many x' for which y' is known

- A model: Function that represents the relationship
between x and y

Dependent (y)

y(x) = function(x, w) 2 “
290 0.2 0.4 0.6 0.8 1.0
Linear: y(x) = w, +w, | | intependent (x) | |
- Aloss function: Estimate how well our model b=l (T, W)
approximates the training examples (aka cost or J///

objective function) I
- Optimization, a way of finding the parameters of our |
model that minimizes the loss function
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The difference between the ‘true’ function and our model is
estimated using our observations

2.0

e Samples
1516 —— True function
- Model

Dependent (y)
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Intependent (x)



Symptoms of over and
underfitting e

Underfitting:

- High training error Classification
. . . illustration

- Training and test error similar

- High bias

L Error Error Error Validation
Overfitting:
o Deep learning VaThC'iétfon
- Very low training error RISIESHon o
- Test error much higher training
Epochs Epochs Epochs
error Possible géomplexitymodel - Perform regularization

« Add more features

- High variance on test data eniedies e - Get more data



How do we measure a model’'s performance?

1. Regression Metrics (Continuous values)

Sum of Squares Error (SSE): Measures the total deviation of the response values from the fit to the response values.
Mean Absolute Error (MAE): The average of the absolute differences between the predicted values and actual values.
Mean Squared Error (MSE): The average of the squared differences between the predicted values and actual values.
Root Mean Squared Error (RMSE): The square root of MSE, often more interpretable as it is in the same units as the
response variable.

e R-squared (Coefficient of Determination): Measures the proportion of the variance in the dependent variable that is
predictable from the independent variables.

2. Classification Metrics (Categorize data into labels)

Accuracy: The proportion of total predictions that were correct.
Precision: The proportion of positive identifications that were actually correct.

Recall (Sensitivity): The proportion of actual positives that were identified correctly.

F1 Score: The harmonic mean of precision and recall.

Confusion Matrix: A table used to describe the performance of a classification model, showing the actual vs. predicted values.
ROC-AUC: The area under the receiver operating characteristic curve, measuring the trade-off between true positive rate and
false positive rate.

e Precision-Recall Curve: Focuses on the performance with respect to the positive (minority) class.



3. Clustering Metrics (Grouping data into clusters)

e  Silhouette Score: Measures how similar an object is to its own cluster compared to other clusters.
Davies-Bouldin Index: The average 'similarity' between each cluster and its most similar cluster, where lower values indicate
better clustering.

e Calinski-Harabasz Index: The ratio of the sum of between-clusters dispersion and of within-cluster dispersion.

4. Time Series Metrics

e Mean Absolute Percentage Error (MAPE): The mean absolute percentage difference between the predicted and actual
values.

e Symmetric Mean Absolute Percentage Error (sMAPE): An adjustment to MAPE that handles zero values more effectively.
5. Other Methods

e Cross-Validation: A method to assess the robustness of the model by training and testing the model on different subsets of the
dataset.

e Learning Curves: Plotting the model performance on the training set and the validation set over time or over the number of
datasets.

e Feature Importance: Evaluating which features contribute most to the model's predictive power.



Too simple: inflexible learning due to too few/wrong features or
too strict regularization — little variance but more bias

Too complex: more prediction variance

High Bias High Variance
Low Variance Low Bias

EDS



* 9; is the predicted value for the ith observation.

* y; is the true value for the i" observation.

Q U a n tlfyl n g e rrO rS : * nisthe total number of observations.

* yisthe mean of all observed values of the dependent variable.

Bias is the average of the errors predictions made by the model and the true values

Bias = 1 YL, (v — i)

1a8 = 2 ;1\Yi — Ui

Sum of Squares Error: Squaring avoids cancellation of pos and neg and emphasizes larger errors.
Aka Residual Sum of Squares Error (RSS)

SSE = Z?:l(yi — ?)z‘)z

Mean Squared Error: Averaged SSE, giving an average error per data point

MSE = =~ > " 1 (4 — #)°



* 9; is the predicted value for the ith observation.
* y; is the true value for the i" observation.

* nisthe total number of observations.

Q U a n tifyi n g e rro rS CO n t . * yisthe mean of all observed values of the dependent variable.

Mean Absolute Error: Avoids squaring errors, useful if large errors are not worse than smaller ones
MAE = 1 Y7 |y — 9
n =1 Yi Yi

Root Mean Squared Error: Same units as response variable, good when large errors are problems

RMSE = /1 37 (i — %)’

Coefficient of Determination (R?): Measures of how well the independent variables explain the
variability in the dependent variable in a regression model.

2 1 3N (i)
R =1 22211(%—37)2



Bias and variance

Bias

Definition: Bias refers to the error due to overly simplistic
assumptions in the learning algorithm. It can lead to the model
underfitting the training data, meaning it does not capture the
underlying trends well.

Characteristics: A high-bias model is likely to have a lower
level of complexity, which makes it less flexible in learning from
the data. This results in the model missing relevant relations
between features and target outputs.

Consequence: High bias can cause the model to be less
accurate on both training and testing data, leading to poor
generalization.

High Bias
Low Variance




Bias and variance

Variance

e Definition: Variance refers to the error due to too much
complexity in the learning algorithm. It can lead to the model
overfitting the training data, meaning it captures noise along
with the underlying patterns.

e Characteristics: A high-variance model is extremely sensitive
to the fluctuations in the training data. It learns features from
the training data that don't generalize to unseen data.

e Consequence: High variance can cause the model to perform
well on the training data but poorly on unseen (test) data due to
overfitting.

Variance is measured through, for example, the difference between
SSE for the training and the testing data. If SSE,__, - SSE,__. is high
the model has high variance

train

High Variance
Low Bias




Bias-variance trade-off

Bias is about the simplicity of the model - high bias can lead to underfitting.
Variance is about the complexity of the model - high variance can lead to overfitting.

e Effective machine learning involves managing this tradeoff to achieve a model that
generalizes well to new, unseen data.

Degree 1 Degree 4 Degree 75
MSE = 8.29e-01(+/- 7.62e-01) MSE = 1.40e+00(+/- 3.09e+00) MSE = 7.08e+17(+/- 2.13e+18)

—— Model —— Model —— Model
—— True function —— True function —— True function
e Samples e Samples e Samples




Linear Regression (LR) fits a linear function

Goal to find function f so that:

@ No linear relationship

f(x) = y A A

Two approaches to determine f(x): .. - = :
e ®
- Analytical: Ordinary Least Squares (OLS) - .
- Numerical: Gradient Descent | e — X




Linear Regression (LR) fits a linear function

! One variable

Consider a dataset with n observations (mi, yi), where y; is the

dependent variable and x; is the independent variable. The linear Observed Value of |_

regression model is: Y for X,
; ; ; Predicted Value of |
Yi _/80+51$z+61 Y for X, ‘

We aim to find the values of (3 (intercept) and (31 (slope) that minimize

the sum of squared residuals (errors), where the residual for each Intercept = f}, !
observation i :@— (Bo + B1z;). \ X X>

The ‘true’ value is:  ¥i = Bo + B1; @ Bias

The predicted value is: ¥i = Bo + brz;



Estimating goodness-of-fit

- The fit of the model is estimated looking at the errors

° Best line:
@ - bias: -5.25135e-16
8 - SSE: 99.2439
- MSE: 0.992439
- MAE: 0.849258
- RMSE: 0.996212
6 -R2: 0.935972
>
4
2 -
0 -
-1.0 -0.5 0.0 0.5 1.0
X

Example: example_linear_regression.ipynb



Multivariate Linear Regression

Basic equation for a multivariate linear
regression model:
Yi = Wo T W1T41 + W2ki2 + ++ + WpTip + €

Y; is the dependent variable for the it" observation.

Zi1, Li2, - - - , Tip are the independent variables (predictors)
for the 5" observation. Pamme ey

wo, W1, Wa, . .., Wy, are the coecff ents to be estimated.

€; is the error term for the it" observation.

The w,is the bias aka the intercept

Model achieves a good fit for the regression
line by finding the best coefficient values (w)
that minimize the errors.

Independent
variables (X,)

A

Target
Variable (Y)

Temperature Humidity Yield
57

50
53
54
55
56
59
62
65
67
71
72
74
75
76
79
80

112
118
128
121
125
136
144
142
149
161
167
168
162
171
175
182
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e K (73 29) ll/—“
A L_”Ej\/\wkb”b ( ) |
With many variables (predlctors) we fit (hyper)planes

Each predictor (i) has an associates slope (w) Example plane with
_ o Y two predictors
For each dependent variable (data point i), with * e

observations indexed by p: , = # 3z iy )

We incorporate the bias w, by setting x,=1, so the
prediction for n observatlons becomes

x) =ewo + E WL, = 2 “v(

L=0

The true value includes an error term of the

residuals: (x) = wo + Y wix; +€;
1=1
Using matrix notation: X
Nx |
Y ek Y-XW+e X,

XQ‘R M\/\/ @/)«\é eﬁﬂ

r-bloggers.com
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The cost function is used to minimize the error

- The cost function (J) is here defined to minimize the sum of squared errors (SSE) by varyin

the coefficients w: x|

n
_ n )2
J(w) = E (% — 92)
1=1
- Recall, the predicted value is: @\L: Wy + W11 + W2 zg T Wpkip

- By minimizing J(w) the relationship between y;and ;can be approximated in the best
available way

- Does not have to be SSE

—_—————

LAsse RINCE



t

d

Fitting the model analytically: Ordinary Least Squares (OSL)

- Differentiation finds the point at which a function f(x) is at a minimum denoted f'(x)

- We can differentiate the cost function J(w) wrt w to find our minimum: dJ(UJ/
ow.

- Minimization leads to a linear set of equations:, A[/ Mlnlmum
(wémf 9J 2o & MLV@Mg? S e
Mot e 3 uwg | —2 Zizl‘(yi —§i) = = C&__\(

VA =0 e o malyi—3) =0 S
\O 2
: »
Y oSl imy-)=0 S| re=o
dwy i=1 Lip\Yi — Yi
J W




Matrix notation

Given a dataset with n observations and p independent variables, the

model is:
Y =XW +¢
Where:

Y isann x 1 column vector of the dependent variable.

Xisann X (p + 1) matrix of the independent variables, with the first
column as 1s for the intercept term.

Wisa(p + 1) x 1 column vector of coefficients (including the
intercept).

eisann x 1 column vector of the residuals.

The response vector Y is:

Yn

* y; represents the value of the dependent variable for the ith

observation.

The data matrix X is structured as follows:

1 11 12 e Z1p

1 21 92 e Z2p
X =

1 @y T2 ... Ty

* Each row represents an observation.
* The first column is all 1's for the intercept term.
* x;j represents the value of the jth predictor for the it observation.

* nis the number of observations, and p is the number of predictors.

The coefficient vector W is structured as:
wo
Wy

W =

Wp

* wy is the intercept term.

* wy, .. ., wy,are the coefficients of the predictors.



Minimize a cost function to fit the model finding optimal w

- The optimal weights are found minimizing the cos’rnflmn’rinn A7

A

W = argmir Z(y@— ’!)z‘)Q X
W U

=1

Using the matrix notation for Yi:

In more compact form:

) PP !
W = argmin ) % (i — XZ'W@
A%

| )

W = argmin (Y — XW)T(Y — XW)
W

,fw&‘sﬁ'\f\t A
3?&\(& ’




Fitting the model analytically: Ordinary Least Squares (O3L)

FoIL < 5 OLs
- In matrix notation (J(w) is now SSE): 2.5 Cx
VwHE = Vw[YTY - Y'XW - WTXTY + WIX'XW] ©

- Taking the derivative term by term, and noting that Y'Y is a constant with respect to W, and
Y'XW and WTXTY are equivalent, the derivative simplifies to:

© Ve W g0

@) vwzfm = —2XTY + 2XTXW o
@ (V24 [‘;\,\/TK‘TY 4 \_\I—rx“l'x u]

- Set to zero: @ —ZXT%XiXWj)

- Rearranging: Ww = %ny,y‘ Ty
X X)) K
- Finall W- x%) XY,

- This result gives you the OLS estimator for the coefficients in multiple linear regression.



Fitting the model Numerically: Gradient Descent

- If we can’t find an analytical solution we use a
numerical method to find optimal weights w

- Gradient qescent is iterative (do many times with Minimum
updates): -
- Initialise w.e.g. with random numbers * E;

)

- Calculate igw), change w, ask: Has the error )
J(w) gotten smaller? %'5 ,
- We update w : Is it moving towards an optimum? ¢ X
=37
» |
O O
@

It can also be a

‘hill-climber’. Take -
note of the sign of the
cost function




Fitting the model Numerically: Gradient Descent

if

if

How do we know which direction to move the weights?

0J(w)
8’(1)@'

0J(w)
8’(1)2'

< 0 = increase ¥ «;

> (0 = decrease ¥ «J;

Assess the gradient resulting from changing the weights for one observation (w.)

Cost

[

\ Leaming step

Minimum

[

!

!

b L ’
Random w
intial value




ORSS =T ORSS
An Increase w; - >0 - decrease w;
; W'h
Cost

Random w' w
initial value

 hero-ic. "
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Least Mean Squares (LMS) update rule

- Repeatedly update w based on the gradient. “
, St B_——.‘Y( )-a AR
Mdns . 0J(w) oW a
wEw— :
>\6\Q New old 8W UWS < EO
- Here,@s the learning rate 3_’9,
- For a datapoint (predicting one datapoint i with p independent variables) this givM
Least Mean Squares (LMS) update rule: 32 SSE y- AMF
we o —— . ¢
Lep~anb — DR, . Sl : .
£ W Y (_%A_(y@ Yi ($z))$z x;eR P
% \V)
VKJYP Error
v €

- As error approaches zero, so does the update (w changes less)



Optimizing across a training set

- To generalise to all data points in the training set options include:
E"& - 1. Batch updates: Sum or average updates across every example i, then change the

parameter values: hids S
%"\/‘/\A W W+ ZA;i(yi — Bi(xs))za ‘\Q'J
Mint- b ok =) -

SGO - 2: Stochastic/online updates: Update the parameters for each data point in turn,
v according to its own gradients

—

Algorithm 1 Stochastic gradient descent

1: Randomly shuffle examples in the training set
2: for i =1 toWrdo
3 Update: "

W — W + 2)\(% — U; (xz)>gjz (update for a linear model)

4: end for




Gradient Descent notes

- The learning rate (A) represents the size of the

‘steps’ of the descent
- Pros:
- Intuitive

Heuristic approach (stochastic optimisation)
- Cons:
Can take many iterations to converge
Only optimal for ‘'smooth’ functions

CNIE<

\/

Objective function Global

A Here high
value optimises

loss

Maximum

Shoulder

Current 1 1 ) State Space

state

A one-dimensional state-space landscape in which elevation
corresponds to the objective function



The choice of loss function can significantly impact results

Best line:

- bias: -5.25135e-16
- SSE: 99.2439

- MSE: 0.992439

- MAE: 0.849258

- RMSE: 0.996212
-R%: 0.935972

New line:

- bias: 0.11054
- SSE: 237.681
- MSE: 2.37681
- MAE: 1.30382
- RMSE: 1.54169
-R%: 0.635038

Example: example_linear_regression.ipynb



