
ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun &  Devashree Kataria

MOCO Amsterdam garden

L3 Validation of 
hypotheses: regression



Intended Learning Outcomes

- Describe bias and variance, as well as the bias-variance trade-off

- For regression models: Describe difference in the expression for quantifying errors and 
calculate these for data

- Describe mathematically and apply, for linear regression and multivariate linear regression 
the analytical (Ordinary Least Squares) and numerical (Gradient Descent) methods for 
determining fit

Rec. reading: B 3.1 + R 1-7, R 3.4.6

Resource: matrix_OLS_NYU_notes.pdf



Hypothesis testing: Goodness of fit
- Indicate the fit of a trained model and the 

causes of poor performance in machine 
learning.

- Goal of training a model: Obtaining a 
generalized model to perform well on 
unseen data.

- Overfitting:
- A function (ML model) is too closely 

aligned with a limited set of data
- Underfitting:

- A function (ML model) is not aligned with a 
limited dataset

- Model complexity:
- As simple as possible, but no simpler



A model is a function that represents the data

simplilearn.com

Hypothesis: If I fit an ML model it will mimic 
the underlying ‘model’ the data came from

Model



Predicting continuous outputs: Regression

We need:

- Features (inputs): we’ll call these x (or x if vectors)
- Training examples: many xi for which yi is known 
- A model: Function that represents the relationship 

between x and y

- A loss function: Estimate how well our model 
approximates the training examples (aka cost or 
objective function)

- Optimization, a way of finding the parameters of our 
model that minimizes the loss function

Linear: y(x) = w
0
+ w

1



The difference between the ‘true’ function and our model is 
estimated using our observations



Symptoms of over and 
underfitting

Underfitting: 

- High training error
- Training and test error similar
- High bias

Overfitting:

- Very low training error
- Test error much higher training 

error
- High variance on test data



How do we measure a model’s performance?

1. Regression Metrics (Continuous values)

● Sum of Squares Error (SSE): Measures the total deviation of the response values from the fit to the response values.
● Mean Absolute Error (MAE): The average of the absolute differences between the predicted values and actual values.
● Mean Squared Error (MSE): The average of the squared differences between the predicted values and actual values.
● Root Mean Squared Error (RMSE): The square root of MSE, often more interpretable as it is in the same units as the 

response variable.
● R-squared (Coefficient of Determination): Measures the proportion of the variance in the dependent variable that is 

predictable from the independent variables.

2. Classification Metrics (Categorize data into labels)

● Accuracy: The proportion of total predictions that were correct.
● Precision: The proportion of positive identifications that were actually correct.
● Recall (Sensitivity): The proportion of actual positives that were identified correctly.
● F1 Score: The harmonic mean of precision and recall.
● Confusion Matrix: A table used to describe the performance of a classification model, showing the actual vs. predicted values.
● ROC-AUC: The area under the receiver operating characteristic curve, measuring the trade-off between true positive rate and 

false positive rate.
● Precision-Recall Curve: Focuses on the performance with respect to the positive (minority) class.



3. Clustering Metrics (Grouping data into clusters)

● Silhouette Score: Measures how similar an object is to its own cluster compared to other clusters.
● Davies-Bouldin Index: The average 'similarity' between each cluster and its most similar cluster, where lower values indicate 

better clustering.
● Calinski-Harabasz Index: The ratio of the sum of between-clusters dispersion and of within-cluster dispersion.

4. Time Series Metrics

● Mean Absolute Percentage Error (MAPE): The mean absolute percentage difference between the predicted and actual 
values.

● Symmetric Mean Absolute Percentage Error (sMAPE): An adjustment to MAPE that handles zero values more effectively.

5. Other Methods

● Cross-Validation: A method to assess the robustness of the model by training and testing the model on different subsets of the 
dataset.

● Learning Curves: Plotting the model performance on the training set and the validation set over time or over the number of 
datasets.

● Feature Importance: Evaluating which features contribute most to the model's predictive power.





Bias is the average of the errors predictions made by the model and the true values

Sum of Squares Error: Squaring avoids cancellation of pos and neg and emphasizes larger errors. 
Aka Residual Sum of Squares Error (RSS)

Mean Squared Error: Averaged SSE, giving an average error per data point

Quantifying errors:



Quantifying errors cont.

Mean Absolute Error: Avoids squaring errors, useful if large errors are not worse than smaller ones

Root Mean Squared Error: Same units as response variable, good when large errors are problems

Coefficient of Determination (R2): Measures of how well the independent variables explain the 
variability in the dependent variable in a regression model.



Bias and variance
Bias

● Definition: Bias refers to the error due to overly simplistic 
assumptions in the learning algorithm. It can lead to the model 
underfitting the training data, meaning it does not capture the 
underlying trends well.

● Characteristics: A high-bias model is likely to have a lower 
level of complexity, which makes it less flexible in learning from 
the data. This results in the model missing relevant relations 
between features and target outputs.

● Consequence: High bias can cause the model to be less 
accurate on both training and testing data, leading to poor 
generalization.



Bias and variance
Variance

● Definition: Variance refers to the error due to too much 
complexity in the learning algorithm. It can lead to the model 
overfitting the training data, meaning it captures noise along 
with the underlying patterns.

● Characteristics: A high-variance model is extremely sensitive 
to the fluctuations in the training data. It learns features from 
the training data that don't generalize to unseen data.

● Consequence: High variance can cause the model to perform 
well on the training data but poorly on unseen (test) data due to 
overfitting.

Variance is measured through, for example, the difference between 
SSE for the training and the testing data. If SSE

test
 - SSE

train 
is high 

the model has high variance



Bias-variance trade-off

● Bias is about the simplicity of the model - high bias can lead to underfitting.
● Variance is about the complexity of the model - high variance can lead to overfitting.
● Effective machine learning involves managing this tradeoff to achieve a model that 

generalizes well to new, unseen data.



Linear Regression (LR) fits a linear function

Goal to find function f so that: 

f(x) = y

Two approaches to determine f(x):

- Analytical: Ordinary Least Squares (OLS)
- Numerical: Gradient Descent



Linear Regression (LR) fits a linear function

One variable

BiasThe ‘true’ value is:

The predicted value is: 



Estimating goodness-of-fit

- The fit of the model is estimated looking at the errors

Example: example_linear_regression.ipynb



Multivariate Linear Regression

Basic equation for a multivariate linear 
regression model:

The w
0
is the bias aka the intercept

Model achieves a good fit for the regression 
line by finding the best coefficient values (w) 
that minimize the errors.



With many variables (predictors) we fit (hyper)planes 

Each predictor (i) has an associates slope (w)

For each dependent variable (data point i), with 
observations indexed by p: 

We incorporate the bias w
0 

by setting x
0
=1, so the 

prediction for n observations becomes:

 

The true value includes an error term of the 
residuals:

Using matrix notation:

r-bloggers.com

Example plane with 
two predictors



The cost function is used to minimize the error

- The cost function (J) is here defined to minimize the sum of squared errors (SSE) by varying 
the coefficients w:

- Recall, the predicted value is:

- By minimizing J(w) the relationship between     and     can be approximated in the best 
available way

- Does not have to be SSE



Fitting the model analytically: Ordinary Least Squares (OSL)

- Differentiation finds the point at which a function f(x) is at a minimum denoted f’(x) 

- We can differentiate the cost function J(w) wrt w to find our minimum:

- Minimization leads to a linear set of equations:

C
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Matrix notation



- The optimal weights are found minimizing the cost function

- Using the matrix notation for     :

- In more compact form: 

Minimize a cost function to fit the model finding optimal w 



Fitting the model analytically: Ordinary Least Squares (OSL)

- In matrix notation (J(w) is now SSE):

- Taking the derivative term by term, and noting that YTY is a constant with respect to W, and 
YTXW and WTXTY are equivalent, the derivative simplifies to:

- Set to zero:

- Rearranging:

- Finally: 

- This result gives you the OLS estimator for the coefficients in multiple linear regression.



Fitting the model Numerically: Gradient Descent

- If we can’t find an analytical solution we use a 
numerical method to find optimal weights w

- Gradient descent is iterative (do many times with 
updates): 

- Initialise w e.g. with random numbers
- Calculate J(w), change w

i
, ask: Has the error 

J(w) gotten smaller?
- We update w

p
: Is it moving towards an optimum?
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Start

Update 1

Update 2

Update 3

Update 4

It can also be a 
‘hill-climber’. Take 
note of the sign of the 
cost function



Fitting the model Numerically: Gradient Descent

- How do we know which direction to move the weights? 
- Assess the gradient resulting from changing the weights for one observation (w

i
)

Gradient



j here is i normally



Least Mean Squares (LMS) update rule 

- Repeatedly update w based on the gradient. 

- Here, λ is the learning rate
- For a datapoint (predicting one datapoint i with p independent variables) this gives us the 

Least Mean Squares (LMS) update rule:

- As error approaches zero, so does the update (w changes less)

Error

oldNew



Optimizing across a training set

- To generalise to all data points in the training set options include:
- 1: Batch updates: Sum or average updates across every example i, then change the 

parameter values:

- 2: Stochastic/online updates: Update the parameters for each data point in turn, 
according to its own gradients



Gradient Descent notes

- The learning rate (λ) represents the size of the 
‘steps’ of the descent

- Pros:
- Intuitive
- Heuristic approach (stochastic optimisation)

- Cons:
- Can take many iterations to converge
- Only optimal for ‘smooth’ functions

Here high 
value optimises 
loss

We will get back to working through 
an example of the GD Update Rule 
for 1 observation



The choice of loss function can significantly impact results

Example: example_linear_regression.ipynb


