ECS171: Machine Learning

L4 Optimization and
generalization of ML
models

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

Intended Learning Outcomes

Understand and be able to apply Least Mean Squares regression via Gradient Descent

- Qualitatively appreciate the impact of choices e.g. the learning rate
Describe and apply the maximum likelihood estimate for simple examples

- Qualitatively appreciate how the maximum likelihood estimate relates to probability

distribution functions

Be able to describe what regularization does with example figures
Describe strategies and make estimates of choosing the ‘best’ model, including with
cross-validation (e.g. k-fold) and hold-out data with different metrics to quantify the error
Describe and apply scaling methods and how they impact a models ability to find an optimum

Problem setting reminder: We want to fit a function to data

Predict using y = wy + w; X,

= The linear function is
not our only choice.
We could have tried

to fit the data as
s> another polynomial

. g : X
One dimensional input 1

Two dimensional input

Predict using y = wy + W, X, +W3 X3

Recap: What is the best weight vector?

Question: How do we know which weight vector is the best one for a training set?

For an input (x,, y.) in the training set, the cost of a mistake is:

1
T 2
Jw) =2 (yi—w'x,)
=1
We learn via optimization. We want to minimize the error by determining optimal weights w:

1
J(w) = min 5 Z(yz — WTXE')Q
~~ =l o
minimize - ~

mean squared error

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% —WTXz')2

=1

Note: Analytical solution exists (lecture 3), so this J(w)
optimization approach is merely a demonstration of the 1
principle.

General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the

gradient has the steepest increase in the function. To get to >
the minimum, go in the opposite direction.
. Compute the gradient of the gradient of J(Wt) Intuition: The gradient is the direction

. t t+1 . « y . of steepest increase in the function. To
Update w' to get w'™' by taking a “step” in the pposite sf6t o thie rinifitin, Eo i the Spposits

direction of the gradient direction

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% —WTXz')2

=1

Note: Analytical solution exists (lecture 3), so this J(w)
optimization approach is merely a demonstration of the 1
principle.

General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the

gradient has the steepest increase in the function. To get to = >
the minimum, go in the opposite direction. o
. Compute the gradient of the gradient of J(Wt) Intuition: The gradient is the direction

. t t+1 . « y . of steepest increase in the function. To
Update w' to get w'™' by taking a “step” in the pposite <16t o thie riniiitin, Eo i the Gpposits

direction of the gradient direction

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% —WTXz')2

=1

Note: Analytical solution exists (lecture 3), so this J(w)
optimization approach is merely a demonstration of the 1
principle.

General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the

gradient has the steepest increase in the function. To get to —- >
the minimum, go in the opposite direction. wowe
. Compute the gradient of the gradient of J(Wt) Intuition: The gradient is the direction

. t t+1 . « y . of steepest increase in the function. To
Update w' to get w'™' by taking a “step” in the pposite <16t o thie rinifitif, Eo i the Spposits

direction of the gradient direction

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% —WTXz')2

=1

Note: Analytical solution exists (lecture 3), so this J(w)
optimization approach is merely a demonstration of the 1
principle.

General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the

gradient has the steepest increase in the function. To get to - >
the minimum, go in the opposite direction. w2 wh WO
. Compute the gradient of the gradient of J(Wt) Intuition: The gradient is the direction

. t t+1 . « y . of steepest increase in the function. To
Update w' to get w'™' by taking a “step” in the pposite stet o thie riniiitin, Eo i the Gpposits

direction of the gradient direction

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% —WTXz')2

Note: Analytical solution exists (lecture 3), so this J(w) -
optimization approach is merely a demonstration of the 1

principle.
General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to e >
the minimum, go in the opposite direction. wwiwl wo
. Compute the gradient of the gradient of J(w!) Intuition: The gradient is the direction
. Update Wt to get wit by taking a “step’ in the pposite of steepest increase in the function. To

_ _ _ get to the minimum, go in the opposite
direction of the gradient direction

Least Mean Squares regression via Gradient Descent
1
J(w) = 52(% _WTXi)2

Note: Analytical solution exists (lecture 3), so this J(w) -
optimization approach is merely a demonstration of the 1

principle.
General strategy for minimizing the cost function J(w):
1. Start with an initial guess for entries in w, let’s call this w’

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to S
the minimum, go in the opposite direction. Wwiwl wo
. Compute the gradient of the gradient of J(w!) Intuition: The gradient is the direction
. Update Wt to get wit by taking a “step’ in the pposite of steepest increase in the function. To

_ _ _ get to the minimum, go in the opposite
direction of the gradient direction

Gradient descent for LMS

1. Initialize w°
2.Fort=0,1,2,....
1. Compute gradient of J(w) at w'. Call it VJ(w')

2. Update w as follows:

witl = w! - AVJ(w')

Here, the A is the learning rate (covered further later in lecture)

Computing the gradient of the cost function

oJ 0J 0J
The gradient is in the form: ~ VJ(w') = dw Bwy’

Recall, that: W = [w1, W, ., wj, .., wh] with j indicating we have some w within w of length n

Computing the gradient of the cost function

oJ 0J oJ }

ceey

The gradient is in the form: ~ VJ(w') = [

Ow;’ Owsy’

Computing the gradient of the cost function

ceey

oJ 0J 0J
The gradient is in the form: ~ VJ(w') = [}

Ow;’ Owsy’

Computing the gradient of the cost function

ceey

oJ 0J 0J
The gradient is in the form: ~ VJ(w') = [}

Ow;’ Owsy’

Computing the gradient of the cost function

ceey

oJ 0J 0J
The gradient is in the form: ~ VJ(w') = [}

Ow;’ Owsy’

Computing the gradient of the cost function

ceey

oJ 0J 0J]

- The gradient is in the form: ~ VJ(w') = [awl Sy’

o7 = o7 lZ(?Ji —WTX¢)2

(9wj 811)]' 2 i—1
1<~ 0J T 9
- 5 : a—wj(yz - W Xz)
1=1
1 o 0J
=3 22(,% —w XZ)@wj (B — Wi — = — Wy T

One element of the
= 3 (i — W)y gradient vector

Differentiation is key concept

-t

—
I

—

Differentiation Rule

constant rule y=>5 ay
ax
power rule y= x° 6_y — Byt
dx
constant multiple rule y = 4x3 oy _ 122
dx
— 26 3 d
sum rule y=x°+x D s + 32
dx
i s o
product rule F SRR o e3%(3sinx + cosx)

dx
https://www.mathsisfun.com/calculus/derivatives-rules.html

G rad Ie nt d esce nt fo r L M S This example has an increasing first derivative,

making it appear to bend upwards: convex

1. Initialize w°

2.Fort=0,1, 2, [until error is below a threshold]

1. Compute gradient of J(w) at w'. Call it VJ(w?).
Evaluate the function for each training example to compute the error and construct the

gradient vector: aJ 2": (41— W) One element of VJ(w!)
8111]' - 7 1)4L1g

i=1

2: Update w as follows:
with = w! — AVJ(w)

Here, the A is the learning rate...

This algorithm is guaranteed to converge to the minimum of J if r is small enough.
Why? The objective J is a convex function

The impact of the learning rate is significant

- The learning rate has a big impact - :,
on how fast and if a model

converges ///“///"f .

- Red: small steps and converges ?’

slowly — e
- Green: big steps, could miss / /

- Blue: in-between R
- Not knowing what the ‘landscape’ \\

looks like makes estimating the
learning rate an important \
question

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html

Approaches to updating weights can have a large impact

Polynomial models

- Not all functions are convex and ‘guaranteed to converge’
- The world is full on non-linear relationships

- We can create a more complicated model by defining input
variables that are combinations of components of x

- Example: A polynomial function of p-th order of one dimensional
feature x:

P
y(x,w) = wo + w1 + W 4 u.',,:z:?['j — E Wiz’
=0
where X is the j-th power of x

The order of the polynomial impacts fit

Degree 1 Degree 4
MSE = 1.14e+00(+/- 1.29e+00) MSE = 1.25e-01(+/- 1.60e-01)
—— Model —— Model
—— True function —— True function
° e Samples e Samples
°
o
o
. \

Degree 20
MSE = 8.82e+11(+/- 2.64e+12)

—— Model
—— True function
b e Samples

|

Example in Discussion

Probabilistic models for linear regression

- Maximum Likelihood Estimation (MLE) for Linear Regression
- A probabilistic framework to estimate parameters of a linear regression model
- We find an optimal way to fit a distribution to the data

- We look for the parameter values of a statistical model that maximises the likelihood of
observing the given data distribution

- What follows if a brief introduction we will build on in a later lecture

- Likelihood estimation is a stepping stone towards Bayesian modelling covered later

cuemath.com

£ N [REEEER

~1

Maximum Likelihood: A coin example

>

< 3
e

N 2 \

-t

- Flip a coin: Number of heads (N,,) number of tails (N,) .

- Goal: What is the probability of heads if we flip again Kead

- The behaviour is summarized with a parameter 0, the probability of heads

- Data of flips D= (x',...,x'%%) are independent Bernoulli random variables with parameter 0
- Individual flips are independent and identically distributed (i.i.d.)

- Likelihood L(0) function is: L(8) = p(D) = N (1 — g)Mr

- L(0) is usually small so we work with the log: £(0) = log L(6) = Ny log + Nrlog(l —0)

- We now wish to choose a 0 which maximises ¢(6) . For our coin example:

a d

15 = 79 (N log6 + Nrlog(1 - 6))
NH Nt
- f 1-6

Ny
Ng + Nt

- Set this to zero we have the maximum likelihood estimate: Omr, =

Maximum Likelihood Estimation

Data: Weight of mice

e ® 000000000 © O

low Mouse weight » High

Maximum Likelihood Estimation

Choose/guess and
underlying distribution

Normal Exponential Gamma

Low Mouse weight » High

Maximum Likelihood Estimation

Let’s try a ‘normal’
distribution

—@ 000000000 —0—

Low Mouse weight » High

Maximum Likelihood Estimation

The average mouse weight.

Low ! » High

Maximum Likelihood Estimation

The average mouse weight

Most of the mice
weight close to
the average

I

Low » High

Maximum Likelihood Estimation

Once shape is determined, we must determine
the optimal location that maximises the
probability of being similar to the observations

@ o000 000000©

@

o

Maximum Likelihood Estimation

Most of the measured values
should be near the average

Location maximises

5
T o oo o
§§ @ . ’ 6 ’ -
=ttt rr+r+1+

[I i i | i i i |

’ ?‘?‘?‘?‘?‘?‘? ’

L DX
P PopNege oo

Maximum Likelihood Estimation

Now we need the ‘maximum
likelihood’ of the standard
deviation

Likelihood of observ

the data

Location maximises
@ = thelikelihood of
- observing the standard
- - deviation of the

- measured data

Standard Deviation

Maximum Likelihood Estimation

Here, 0 is the likelihood
L(6) 2 logL(8|X) =X{. log L(8]X;)

_(Yi—WTXi)Z

1
=Yz logl==x e 27]

N 1
=——log(2mo?) — ﬁZ?’ﬂ(Yi — wiX;)?

Regression key concepts

Data fits — is linear model best (model selection)?

- Simple models may not capture all the important variations (signal) in the data: underfit

- More complex models may overfit the training data (fit not only the signal but also the noise in
the data), especially if not enough data to constrain model

- Bias-variance trade-off is a key concept

One method of assessing fit: test generalization = model’s ability to predict the held out data

Optimization is essential: stochastic and batch iterative approaches; analytic when available

Regularization:
Curbing model complexity with the loss function

Regularization is a process where the model
has to choose what to emphasize

The concept is used in the cost function, adding
a ‘penalty’ term for more complicated models,
for example:
- A penalty for having a higher order
polynomial versus a smaller one

wikipedia

Green: regularized
Blue: without regularization
Red: data

X

Regularization: Three main types

- Regularization methods are techniques that are used
to calibrate ML models so as to minimize the adjusted
loss function and prevent overfitting or underfitting

- Recall, in the absence of perfect data, simple models
can have better ability to generalise (perform well on
unseen data)

. . . . L2: “squared magnitude” of the coefficient as a penalty term
- Two main regularization techniques:

- Lasso regression (L1) Cost = % ;‘:l(yi —)2 X Z:‘;l W?
- Ridge regression (L2) N RN - J
- Elastic Net: Combination of L1 and L2 N?S/E Penalty term

- We will come back to this concept for more
‘complicated’ cases in deep learning

Optimization and generalisation

High Bias Low General Error High Variance

- We have now gone over a few types of models: i el S ..
Linear, polynomial, probabilistic and ways to train

General Error

- Recall, when we train a model, e.g. the linear,
polynomial of various orders etc, we have a Eor
hypothesis of a representation of the ‘true’
function our samples come from in that model

Variance

- A wrong approach to selecting the ‘best’ model is
to simply compare the errors

- Simply comparing errors least to overfitting

Generalisation: Test on held-out data

- We ‘hold out’ some of the data

- Train model on the ‘training data’, assess the .
convergence with the test data [8 e

- Can use additional ‘holdout’ set not used to .
select/tune the model .

- Popular metrics: R2, RMSE

> 15

1.0
Training Test

0.5

\
Single Dataset

0.0
-1.0 -0.5 0.0 0.5 10 15 2.0 25 3.0

Training Validation Test

|
Single Dataset

Example: constructing_polynomial_regression.ipynb

@]llias Tagkopoulos

Comparing test/train error over the order Bishop
of a polynomial « Zero Training Error
— - 1 - T
—©— Training
Lf M=9 | —O— Test
t
o)
P S
i d = 0.5
0 / 2
—1F
' 0 0 3 6 9
0 1 M

T

Root-Mean-Square (RMS) Error: /gy = \/QE(w*)/N

RMSE tells us how concentrated the data is around the line of best fit.

Cross-validation

Cross validation is used to compare models and prevent overfitting.

A resampling procedure to help the model to generalize well

* Has a single parameter called k for the number of partitions
* Procedure for k-fold cross validation: [eration 1[0 0 00 01000000 000000000
1. Randomize the dataset and create k equal size partitions [iteretion 2| O QSR DD DT 09909000000
2. Use k-1 partitions for training the model Mogogooogg—ggggg
3. Use the kth partition for testing and evaluating the model
4. Record the evaluation scores (such as MSE, R?) in each iteration M—»OOOOOOOOOOOOOO FFFPF
5. iterate k times with a different subset reserved for testing purpose
each time.
6. Select the model with the highest performance score and average the

evaluation scores.

* Some commonly used variations on cross-validation are stratified k-fold,
leave-one-out, and repeated k-fold are available in scikit-learn.

Optimisation: Standardizing =

- Pre-processing carefully can help the optimization of the
model: Often overlooked!

Number of households

- Standardizing (or Z-score normalization) refers to

rescaling features to have the properties of a normal
distribution. This is not only important for features with
different units, but also for many algorithms that assume
an underlying normal distribution (Euclidian distance
measures). The mean (¢) and standard deviation (o)
should be 0 and 1 respectively. Scores (or z-scores) for

the samples "x" are:

/
— =2 =1 o 1 2
L2 Median Income

Data after standard scalin

Number of households

i—

O' T

~ w
Color mapping for values of y

Optimization: Min-Max Scaling

- Normalization/Min-Max scaling does not center the data around zero (the name is misleading), but scales
the data to a fixed range e.g. between 0 and 1. A bounded range will end up with smaller standard

deviations. For the data x:

L — Tmin
'/I:norm -
Lmazr — Lmin
Unnormalized Normalized
bll [H‘
yD. G
@ ‘rf
L AN ' b
1359 $
» W > W

quora.com

D

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html

0

A\

/ ° \
I\ /
2 w /
5

