
ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

MOCO Amsterdam garden

L4 Optimization and
generalization of ML
models

Intended Learning Outcomes

- Understand and be able to apply Least Mean Squares regression via Gradient Descent
- Qualitatively appreciate the impact of choices e.g. the learning rate

- Describe and apply the maximum likelihood estimate for simple examples
- Qualitatively appreciate how the maximum likelihood estimate relates to probability

distribution functions
- Be able to describe what regularization does with example figures
- Describe strategies and make estimates of choosing the ‘best’ model, including with

cross-validation (e.g. k-fold) and hold-out data with different metrics to quantify the error
- Describe and apply scaling methods and how they impact a models ability to find an optimum

Problem setting reminder: We want to fit a function to data

Recap: What is the best weight vector?

Question: How do we know which weight vector is the best one for a training set?

For an input (xi, yi) in the training set, the cost of a mistake is:

We learn via optimization. We want to minimize the error by determining optimal weights w:

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Least Mean Squares regression via Gradient Descent

Note: Analytical solution exists (lecture 3), so this
optimization approach is merely a demonstration of the
principle.

General strategy for minimizing the cost function J(w):

1. Start with an initial guess for entries in w, let’s call this w0

2. Calculate the gradient, and update wt in the direction the
gradient has the steepest increase in the function. To get to
the minimum, go in the opposite direction.

• Compute the gradient of the gradient of J(wt)
• Update wt to get wt+1 by taking a “step” in the pposite
direction of the gradient

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, ….

1. Compute gradient of J(w) at wt. Call it ∇J(wt)

2. Update w as follows:

Here, the λ is the learning rate (covered further later in lecture)

Computing the gradient of the cost function

- The gradient is in the form:

- Recall, that : with j indicating we have some w within w of length n

Computing the gradient of the cost function

- The gradient is in the form:

Computing the gradient of the cost function

- The gradient is in the form:

Computing the gradient of the cost function

- The gradient is in the form:

Computing the gradient of the cost function

- The gradient is in the form:

Computing the gradient of the cost function

- The gradient is in the form:

One element of the
gradient vector

Differentiation is key concept

Gradient descent for LMS

1. Initialize w0

2. For t = 0, 1, 2, …. [until error is below a threshold]

1. Compute gradient of J(w) at wt. Call it ∇J(wt).
Evaluate the function for each training example to compute the error and construct the
gradient vector:

2: Update w as follows:

Here, the λ is the learning rate…

One element of ∇J(wt)

This example has an increasing first derivative,
making it appear to bend upwards: convex

The impact of the learning rate is significant

- The learning rate has a big impact
on how fast and if a model
converges

- Red: small steps and converges
slowly

- Green: big steps, could miss
- Blue: in-between
- Not knowing what the ‘landscape’

looks like makes estimating the
learning rate an important
question

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html

Approaches to updating weights can have a large impact

baeldung.com

Polynomial models

- Not all functions are convex and ‘guaranteed to converge’
- The world is full on non-linear relationships

- We can create a more complicated model by defining input
variables that are combinations of components of x

- Example: A polynomial function of p-th order of one dimensional
feature x:

where xj is the j-th power of x

The order of the polynomial impacts fit

Example in Discussion

Probabilistic models for linear regression

- Maximum Likelihood Estimation (MLE) for Linear Regression

- A probabilistic framework to estimate parameters of a linear regression model

- We find an optimal way to fit a distribution to the data

- We look for the parameter values of a statistical model that maximises the likelihood of
observing the given data distribution

- What follows if a brief introduction we will build on in a later lecture

- Likelihood estimation is a stepping stone towards Bayesian modelling covered later

Maximum Likelihood: A coin example

- Flip a coin: Number of heads (NH) number of tails (NT)
- Goal: What is the probability of heads if we flip again
- The behaviour is summarized with a parameter 𝜃, the probability of heads
- Data of flips D= (x1,...,x100) are independent Bernoulli random variables with parameter 𝜃

- Individual flips are independent and identically distributed (i.i.d.)
- Likelihood L(𝜃) function is:
-
- L(𝜃) is usually small so we work with the log:
- We now wish to choose a 𝜃 which maximises . . For our coin example:

- Set this to zero we have the maximum likelihood estimate:

cuemath.com

Data: Weight of mice

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Choose/guess and
underlying distribution

Maximum Likelihood Estimation

Let’s try a ‘normal’
distribution

Maximum Likelihood Estimation

Maximum Likelihood Estimation

The average mouse weight

Most of the mice
weight close to
the average

Maximum Likelihood Estimation

Once shape is determined, we must determine
the optimal location that maximises the
probability of being similar to the observations

Maximum Likelihood Estimation

Most of the measured values
should be near the average

Location maximises
the likelihood of
observing the mean of
the measured data

Li
ke

lih
oo

d
of

 o
bs

er
vi

ng

th
e

da
ta

Now we need the ‘maximum
likelihood’ of the standard
deviation

Maximum Likelihood Estimation

Location maximises
the likelihood of
observing the standard
deviation of the
measured data

Li
ke

lih
oo

d
of

 o
bs

er
vi

ng

th
e

da
ta

Maximum Likelihood Estimation

Here, 𝜃 is the likelihood

Regression key concepts

Data fits – is linear model best (model selection)?

- Simple models may not capture all the important variations (signal) in the data: underfit
- More complex models may overfit the training data (fit not only the signal but also the noise in

the data), especially if not enough data to constrain model
- Bias-variance trade-off is a key concept

One method of assessing fit: test generalization = model’s ability to predict the held out data

Optimization is essential: stochastic and batch iterative approaches; analytic when available

Regularization:
Curbing model complexity with the loss function

- Regularization is a process where the model
has to choose what to emphasize

- The concept is used in the cost function, adding
a ‘penalty’ term for more complicated models,
for example:

- A penalty for having a higher order
polynomial versus a smaller one

wikipedia

Green: regularized
Blue: without regularization
Red: data

Regularization: Three main types

- Regularization methods are techniques that are used
to calibrate ML models so as to minimize the adjusted
loss function and prevent overfitting or underfitting

- Recall, in the absence of perfect data, simple models
can have better ability to generalise (perform well on
unseen data)

- Two main regularization techniques:
- Lasso regression (L1)
- Ridge regression (L2)
- Elastic Net: Combination of L1 and L2

- We will come back to this concept for more
‘complicated’ cases in deep learning

MSE Penalty term

L2: “squared magnitude” of the coefficient as a penalty term

Optimization and generalisation

- We have now gone over a few types of models:
Linear, polynomial, probabilistic and ways to train

- Recall, when we train a model, e.g. the linear,
polynomial of various orders etc, we have a
hypothesis of a representation of the ‘true’
function our samples come from in that model

- A wrong approach to selecting the ‘best’ model is
to simply compare the errors

- Simply comparing errors least to overfitting

Generalisation: Test on held-out data

- We ‘hold out’ some of the data
- Train model on the ‘training data’, assess the

convergence with the test data
- Can use additional ‘holdout’ set not used to

select/tune the model
- Popular metrics: R2, RMSE

Example: constructing_polynomial_regression.ipynb

BishopComparing test/train error over the order
of a polynomial

Cross-validation

K-fold cross validation

Optimisation: Standardizing

- Pre-processing carefully can help the optimization of the
model: Often overlooked!

- Standardizing (or Z-score normalization) refers to
rescaling features to have the properties of a normal
distribution. This is not only important for features with
different units, but also for many algorithms that assume
an underlying normal distribution (Euclidian distance
measures). The mean (𝜇) and standard deviation (𝜎)
should be 0 and 1 respectively. Scores (or z-scores) for
the samples "x" are:

-

Optimization: Min-Max Scaling

- Normalization/Min-Max scaling does not center the data around zero (the name is misleading), but scales
the data to a fixed range e.g. between 0 and 1. A bounded range will end up with smaller standard
deviations. For the data x:

quora.com

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html

