
ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

MOCO Amsterdam garden

L5 Optimization, regularization
and linear classification with
logistic and perceptron lerning

Intended Learning Outcomes

- Describe stochastic and batch gradient descent, compare and contrast to Newton’s method
and implications of convexity in f(x)

- Evaluate and describe under and overfitting using error metrics
- Describe and apply momentum, as well as L1 and L2 regularization
- Describe and demonstrate how linear classification is related to linear regression
- Describe and apply logistic regression as a basis function expansion
- Describe perceptron learning for classification, and implications of using different cost

functions
- In the context of what we previously learned, describe, compare and contrast the neural

network layers and activation function concepts

Recommended reading:
Note on linear classifiers by R. Grosse for L5:
Extra note on linear regression by R. Grosse for L2: notes_on_linear_regression.pdf

Optimisation

Good values are typically between 0.001 and 0.1. You should do a grid search if you want good
performance (i.e. try 0.1, 0.03, 0.01, . . .).

In gradient descent, the learning rate λ is a hyperparameter we need to tune. Here are some things
that can go wrong:

Terminology: Epoch and batch

- 1 epoch: All instances in training set are processed once to update weights of model

- Batch: Dataset partitioned into ‘batches’ that are multiple groups of equal size. Number and
size are important ‘hyper parameters’

- If all observations in the training dataset is equal to the batches there is only one observation
per batch (batch-size = 1)

- Batch Gradient Descent is same as Stochastic Gradient Descent
- Batch Gradient Descent always converges

- There are performance trade-offs between batch size and number

Why not always use Batch Gradient Descent?

- Example: We have 10,000 data points and 10 features. SSE is as many terms as datpoints
so here 10,000

- We must compute the derivative and do 100,000 computations (10,000*10) per iteration

- Usually one takes around 1000 iterations; 100,000,000 computations (100,000*1000)

- The overhead is very large and thus convergence is slow and expensive

- Stochastic Gradient Descent to the rescue:
- When selecting data points at each step to calculate the derivatives, randomly pick one

data set at each iteration
- Reduces the computations enormously

Modified from: towardsdatascience.com

GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

S. Rafatirad

GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

S. RafatiradActivity-Stochastic GD Example-1.ipynb

Diagnosing optimisation problems

To diagnose optimization problems, it’s
useful to look at training curves: plot the
training cost as a function of iteration.

Warning: in general, it’s very hard to tell from
the training curves whether an optimizer has
converged. They can reveal major problems,
but they can’t guarantee convergence.

As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.

Reminder: Generalisation

Convex functions

- When selecting an optimization algorithm, it's
important to consider if the cost function is convex
or non-convex

- Convex:
- only one minima

- Non-convex:
- Several minima and e.g. saddle points

Convex functions continued

- How can we tell if a function f(x) is convex or
non-convex?

- For t in range [0,1] then f(x) is convex in this
range if:

- Line segment between any two points on the
graph of the function lies above or on the graph
of the function, and not below it

Newton’s Method for gradient descent (Newton-Raphson)
- Taylor Series is an expansion around a function f(x) into an infinite sum of terms.

Each term has a larger exponent like x, x2, x3… increasingly approximating f(x)

- Taylor expanding around minima x*:

- If x-x* is small the higher order terms are negligible

- If the minimum is quadratic:

Adapted from siyavula.com

x*

0 at minima
Isaac Newton

(English 1600s)
Joseph Raphson
(English 1600s)

If the cost function is quadratic

Newton’s Method for gradient descent (Newton-Raphson)

- Newton’s method, als called ‘convex optimisation):

- First derivative: Slope of the tangent line

- Second derivative: Instantaneous rate of change of first
derivative. Sign of second derivative indicates if the slope
of the tangent line is increasing or decreasing

- Pros:
- Fast: Quadratic convergence
- Generalises well

- Cons:
- Varying robustness: Sometimes fails
- Some smoothness requirements

Black: Gradient Descent
Blue: Newton’s method

First derivative

Second derivative

Adding ‘momentum’ to gradient descent
- Adding a momentum term (𝛼) to updates:

- The 𝛼 is used with e.g. stochastic and mini-batch gradient
descent

- Speeds up convergence and stops optimisation from ‘getting
stuck’ in local minima

- The 𝛼 helps informs of direction by knowing previous step

- Prevents oscillations: Representing interia

- ‘Smooths out’ oscillations in updates allowing faster
convergence

Adding ‘momentum’ to gradient descent

- Small 𝛼 values:
- Reduce interia effect and impact of recent

adjustments
- Starting with low 𝛼 allows algorithm to explore

‘optimisation landscape’ more fully

- Larger 𝛼 values:
- Allows algorithm to move in same direction as

previous adjustment
- Starting with high 𝛼 helps speed-up convergence

- Commonly, momentum 𝛼 is initialised (e.g. 0.9) and and
tuned similar to learning rate λ

Oscillating descent

Non-oscillating descent

Generalisation: Regularization

Regularization: Regularization reduces the variance at the cost of increasing the bias.

- The degree M of the polynomial controls the model’s complexity.

- The value of M is a hyperparameter for polynomial expansion. We can tune it using a validation set.

- Restricting the number of parameters (e.g. M in polynomial example from before) is a crude approach to controlling
the model complexity.

- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

- A lot of common loss and regularization functions are convex functions, for example:
- L1 ‘lasso’ regularization
- L2 ‘ridge regression’ regularization

L1 and L2 regularization are convex functions

L2 ‘Ridge’: Squared magnitude of the coefficient

Encourages weights to be close to zero
MSE

Penalty term

L1 Lasso: Sum of absolute values of the coefficient

Encourages weights to be exactly zero
MSE Penalty term

L1 and L2 regularization: Takeaways

- We can encourage the weights to be small by choosing as our regularizer the L2 penalty.

- Note: To be precise, the L2 norm is Euclidean distance, so we’re regularizing the squared L2
norm.

- The regularized cost function makes a tradeoff between fit to the data and the norm of the
weights.

- If you fit training data poorly, J is large. If your optimal weights have high values, R is large.

- Large λ penalizes weight values more.

- Like M , λ is a hyperparameter we can tune with a validation set.

Linear Classification: Categorical outputs

V7labs.com, anujadp.medium.com, machinelearningmastery.com

Linear Classification: Categorical outputs

- What do all these problems have in common?
- Categorical outputs, called labels (e.g. yes/no, dog/cat/other)

- Assigning each input vector to one of a finite number of labels is called classification

- Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog, happy/sad)

- Multi-class classification: multiple possible labels

We will first look at binary problems, and discuss multi-class problems later in class

Classification vs. Regression

- Actually: We can use all we’ve covered so far ignoring the categorical nature!
- Suppose we have a binary problem: t ∈ {−1, 1}
- Assuming the standard model used for (linear) regression:

- Using Sum of Squared Error (SSE) as our cost function J(w):

- But…how do we predict a label this way..?

Classification vs. Regression

- One dimensional example (input x is 1-dim): Red or blue?
- The colors indicate labels:

- Blue plus denotes that x
i
 is from the first class

- Red circle that x
i
 is from the second class

Classification vs. Regression

- Our classifier has the form:

- A reasonable decision rule is:

- Mathematically write as:

Classification vs. Regression

- Mathematically write function as:

- This specifies a linear classifier: it has a linear boundary (hyperplane):

- This hyperplane separates the space into two ”half-spaces”

Decision plane in 1D: This is simply a threshold

Decision plane in 2D: This is a line

Decision plane in 3D: This is a plane

- What about higher dimensions?

Geometric interpretation of decision boundary

- A line through the origin and orthogonal to w:
- Shifted by w

0
:

G. Shakhnarovich

Learning is estimating a “good” decision boundary

- Goal: Find w (direction) and w
0
 (location) of the boundary

- We need a criteria that tell us how to select the parameters

Cost functions are also used for linear classifiers

- In classification, the cost function is a metric for how
well the data is separated by the boundary (red line)

- Causes for non-perfect separation:
- Model is too simple (e.g. data is non-linear)
- Noise in the inputs (i.e., data attributes)
- Errors in data targets (mis-labeling)
- Simple features that do not account for all

variations

- We will cover more complex non-linear models later
in class

Binary Classification Algorithms

Logistic Regression or Linear Regression?

- Consider a classification problems e.g.:
- Spam detection (1 or 0)
- Tumor detection (1 or 0)
- Mood detection (1 or 0)

- If the hypothesis is a linear regression model:

- Drawbacks of using linear regression for classification:
- Sensitive to outliers
- Sensitivity to selected threshold

- Overall: Logistic Regression is a better way to perform classification!

Logistic Regression

- When the goal is to classify the data points (samples) into
categories (or labels), you can use Logistic Regression

- Output: 0 or 1, or a probability estimate

- Logistic regression has the form of a sigmoid function
- S-shaped curve
- Maps a real value input to a value between 0 and 1 (probability of a binary

outcome)
- Sigmoid function is also used as an activation function in Artificial Neural

Networks
- Sigmoid function is good for modeling non-linear relationships between the

input and the output
- The default threshold for logistic regression is 0.5

- Logistic regression is a special case of function expansion

Logistic Regression as a Basis Function Expansion

- Function expansion is a mathematical technique that involves approximating a complex
function by a simpler function that can be represented as a sum of simpler functions

- The ‘simpler functions’ are called Basis Functions

- Useful to simplify a complicated expression involving a complex function

- Logistic Regression is a special case of Function Expansion, where it models the probability
of the binary outcome as a logistic sigmoid function of a linear combination of input variables

⇒

Logistic regression example

- The hours did each student study and sleep:
- Did the student pass (1) or fail (0)?

- The default threshold is 0.5

Perceptron Learning Algorithm

- The Perceptron Learning Algorithm is supervised
learning that is good for binary classification

- The Perceptron model takes an input, aggregates it
(calculates the weighted sum), and with the step
function returns 1 if this is more than a threshold or
0 if it is equal or below

ataspinar.com

Different activation functions

Logistic Regression vs Perceptron Learning

The Perceptron (McCulloch–Pitts neuron)

Walter Pitts (US)
1923-1969

Warren McCulloch (US)
1898-1969

1943

AI ‘spring’ and ‘winter’

Richard Sole

Introduction to Neural Networks

Neural Network: Layers

Neural Network: Layers

Neural Network: Activation Function

