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L5 Optimization, regularization 
and linear classification with 
logistic and perceptron lerning



Intended Learning Outcomes

- Describe stochastic and batch gradient descent, compare and contrast to Newton’s method 
and implications of convexity in f(x) 

- Evaluate and describe under and overfitting using error metrics
- Describe and apply momentum, as well as L1 and L2 regularization
- Describe and demonstrate how linear classification is related to linear regression
- Describe and apply logistic regression as a basis function expansion
- Describe perceptron learning for classification, and implications of using different cost 

functions
- In the context of what we previously learned, describe, compare and contrast the neural 

network layers and activation function concepts

Recommended reading:
Note on linear classifiers by R. Grosse for L5: 
Extra note on linear regression by R. Grosse for L2: notes_on_linear_regression.pdf



Optimisation

Good values are typically between 0.001 and 0.1. You should do a grid search if you want good 
performance (i.e. try 0.1, 0.03, 0.01, . . .).

In gradient descent, the learning rate λ is a hyperparameter we need to tune. Here are some things 
that can go wrong:



Terminology: Epoch and batch 

- 1 epoch: All instances in training set are processed once to update weights of model

- Batch: Dataset partitioned into ‘batches’ that are multiple groups of equal size. Number and 
size are important ‘hyper parameters’

- If all observations in the training dataset is equal to the batches there is only one observation 
per batch (batch-size = 1)

- Batch Gradient Descent is same as Stochastic Gradient Descent
- Batch Gradient Descent always converges

- There are performance trade-offs between batch size and number



Why not always use Batch Gradient Descent?

- Example: We have 10,000 data points and 10 features. SSE is as many terms as datpoints 
so here 10,000

- We must compute the derivative and do 100,000 computations (10,000*10) per iteration

- Usually one takes around 1000 iterations; 100,000,000 computations (100,000*1000)

- The overhead is very large and thus convergence is slow and expensive

- Stochastic Gradient Descent to the rescue:
- When selecting data points at each step to calculate the derivatives, randomly pick one 

data set at each iteration
- Reduces the computations enormously

Modified from: towardsdatascience.com



GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

S. Rafatirad



GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

S. RafatiradActivity-Stochastic GD Example-1.ipynb



Diagnosing optimisation problems

To diagnose optimization problems, it’s 
useful to look at training curves: plot the 
training cost as a function of iteration.

Warning: in general, it’s very hard to tell from 
the training curves whether an optimizer has 
converged. They can reveal major problems, 
but they can’t guarantee convergence.



As M increases, the magnitude of coefficients gets larger.

For M = 9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.



Reminder: Generalisation



Convex functions

- When selecting an optimization algorithm, it's 
important to consider if the cost function is convex 
or non-convex

- Convex: 
- only one minima

- Non-convex: 
- Several minima and e.g. saddle points



Convex functions continued

- How can we tell if a function f(x) is convex or 
non-convex?

- For t in range [0,1] then f(x) is convex in this 
range if:

- Line segment between any two points on the 
graph of the function lies above or on the graph 
of the function, and not below it



Newton’s Method for gradient descent (Newton-Raphson)
- Taylor Series is an expansion around a function f(x) into an infinite sum of terms. 

Each term has a larger exponent like x, x2, x3… increasingly approximating f(x)

- Taylor expanding around minima x*:

- If x-x* is small the higher order terms are negligible

- If the minimum is quadratic:

Adapted from siyavula.com

x*

0 at minima
Isaac Newton 

(English 1600s)
Joseph Raphson 
(English 1600s)

If the cost function is quadratic



Newton’s Method for gradient descent (Newton-Raphson)

- Newton’s method, als called ‘convex optimisation): 

- First derivative: Slope of the tangent line

- Second derivative: Instantaneous rate of change of first 
derivative. Sign of second derivative indicates if the slope 
of the tangent line is increasing or decreasing

- Pros: 
- Fast: Quadratic convergence
- Generalises well

- Cons: 
- Varying robustness: Sometimes fails
- Some smoothness requirements

Black: Gradient Descent
Blue: Newton’s method

First derivative

Second derivative



Adding ‘momentum’ to gradient descent
- Adding a momentum term (𝛼) to updates: 

- The 𝛼 is used with e.g. stochastic and mini-batch gradient 
descent

- Speeds up convergence and stops optimisation from ‘getting 
stuck’ in local minima

- The 𝛼 helps informs of direction by knowing previous step

- Prevents oscillations: Representing interia

- ‘Smooths out’ oscillations in updates allowing faster 
convergence



Adding ‘momentum’ to gradient descent

- Small 𝛼 values:
- Reduce interia effect and impact of recent 

adjustments
- Starting with low 𝛼 allows algorithm to explore 

‘optimisation landscape’ more fully

- Larger 𝛼 values:
- Allows algorithm to move in same direction as 

previous adjustment
- Starting with high 𝛼 helps speed-up convergence

- Commonly, momentum 𝛼 is initialised (e.g. 0.9) and and 
tuned similar to learning rate λ 

Oscillating descent

Non-oscillating descent



Generalisation: Regularization

Regularization: Regularization reduces the variance at the cost of increasing the bias.

- The degree M of the polynomial controls the model’s complexity.

- The value of M is a hyperparameter for polynomial expansion. We can tune it using a validation set.

- Restricting the number of parameters (e.g. M in polynomial example from before) is a crude approach to controlling 
the model complexity.

- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

- A lot of common loss and regularization functions are convex functions, for example:
- L1 ‘lasso’ regularization
- L2 ‘ridge regression’ regularization



L1 and L2 regularization are convex functions

L2 ‘Ridge’: Squared magnitude of the coefficient

Encourages weights to be close to zero
MSE

Penalty term

L1 Lasso: Sum of absolute values of the coefficient 

Encourages weights to be exactly zero
MSE Penalty term



L1 and L2 regularization: Takeaways 

- We can encourage the weights to be small by choosing as our regularizer the L2 penalty.

- Note: To be precise, the L2 norm is Euclidean distance, so we’re regularizing the squared L2 
norm.

- The regularized cost function makes a tradeoff between fit to the data and the norm of the 
weights.

- If you fit training data poorly, J is large. If your optimal weights have high values, R is large.

- Large λ penalizes weight values more.

- Like M , λ is a hyperparameter we can tune with a validation set.



Linear Classification: Categorical outputs 

V7labs.com, anujadp.medium.com, machinelearningmastery.com



Linear Classification: Categorical outputs 

- What do all these problems have in common?
- Categorical outputs, called labels (e.g. yes/no, dog/cat/other)

- Assigning each input vector to one of a finite number of labels is called classification

- Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog, happy/sad)

- Multi-class classification: multiple possible labels

We will first look at binary problems, and discuss multi-class problems later in class



Classification vs. Regression

- Actually: We can use all we’ve covered so far ignoring the categorical nature!
- Suppose we have a binary problem: t ∈ {−1, 1}
- Assuming the standard model used for (linear) regression:

- Using Sum of Squared Error (SSE) as our cost function J(w):

- But…how do we predict a label this way..?



Classification vs. Regression

- One dimensional example (input x is 1-dim): Red or blue?
- The colors indicate labels:

- Blue plus denotes that x
i
 is from the first class 

- Red circle that x
i
 is from the second class



Classification vs. Regression

- Our classifier has the form:

- A reasonable decision rule is:

- Mathematically write as: 



Classification vs. Regression

- Mathematically write function as:

- This specifies a linear classifier: it has a linear boundary (hyperplane):

- This hyperplane separates the space into two ”half-spaces”



Decision plane in 1D: This is simply a threshold



Decision plane in 2D: This is a line



Decision plane in 3D: This is a plane

- What about higher dimensions?



Geometric interpretation of decision boundary

- A line through the origin and orthogonal to w: 
- Shifted by w

0
: 

G. Shakhnarovich



Learning is estimating a “good” decision boundary

- Goal: Find w (direction) and w
0
 (location) of the boundary

- We need a criteria that tell us how to select the parameters



Cost functions are also used for linear classifiers

- In classification, the cost function is a metric for how 
well the data is separated by the boundary (red line)

- Causes for non-perfect separation:
- Model is too simple (e.g. data is non-linear)
- Noise in the inputs (i.e., data attributes)
- Errors in data targets (mis-labeling)
- Simple features that do not account for all 

variations 

- We will cover more complex non-linear models later 
in class



Binary Classification Algorithms



Logistic Regression or Linear Regression?

- Consider a classification problems e.g.:
- Spam detection (1 or 0)
- Tumor detection (1 or 0)
- Mood detection (1 or 0)

- If the hypothesis is a linear regression model:

- Drawbacks of using linear regression for classification:
- Sensitive to outliers
- Sensitivity to selected threshold

- Overall: Logistic Regression is a better way to perform classification!



Logistic Regression

- When the goal is to classify the data points (samples) into 
categories (or labels), you can use Logistic Regression

- Output: 0 or 1, or a probability estimate

- Logistic regression has the form of a sigmoid function
- S-shaped curve
- Maps a real value input to a value between 0 and 1 (probability of a binary 

outcome)
- Sigmoid function is also used as an activation function in Artificial Neural 

Networks
- Sigmoid function is good for modeling non-linear relationships between the 

input and the output
- The default threshold for logistic regression is 0.5

- Logistic regression is a special case of function expansion



Logistic Regression as a Basis Function Expansion

- Function expansion is a mathematical technique that involves approximating a complex 
function by a simpler function that can be represented as a sum of simpler functions

- The ‘simpler functions’ are called Basis Functions

- Useful to simplify a complicated expression involving a complex function

- Logistic Regression is a special case of Function Expansion, where it models the probability 
of the binary outcome as a logistic sigmoid function of a linear combination of input variables

⇒



Logistic regression example

- The hours did each student study and sleep:
- Did the student pass (1) or fail (0)?

- The default threshold is 0.5



Perceptron Learning Algorithm

- The Perceptron Learning Algorithm is supervised 
learning that is good for binary classification

- The Perceptron model takes an input, aggregates it 
(calculates the weighted sum), and with the step 
function returns 1 if this is more than a threshold or 
0 if it is equal or below

ataspinar.com





Different activation functions



Logistic Regression vs Perceptron Learning



The Perceptron (McCulloch–Pitts neuron)

Walter Pitts (US)
1923-1969

Warren McCulloch (US)
1898-1969

1943



AI ‘spring’ and ‘winter’

Richard Sole



Introduction to Neural Networks



Neural Network: Layers



Neural Network: Layers



Neural Network: Activation Function




