ECS171: Machine Learning

LS Optimization, regularization
and linear classification with
logistic and perceptron lerning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria



Intended Learning Outcomes

- Describe stochastic and batch gradient descent, compare and contrast to Newton’s method
and implications of convexity in f(x)

- Evaluate and describe under and overfitting using error metrics

- Describe and apply momentum, as well as L1 and L2 regularization

- Describe and demonstrate how linear classification is related to linear regression

- Describe and apply logistic regression as a basis function expansion

- Describe perceptron learning for classification, and implications of using different cost
functions

- In the context of what we previously learned, describe, compare and contrast the neural
network layers and activation function concepts

Recommended reading:
Note on linear classifiers by R. Grosse for L5:
Extra note on linear regression by R. Grosse for L2: notes_on_linear_regression.pdf



Optimisation
Good values are typically between 0.001 and 0.1. You should do a grid search if you want good

performance (i.e. try 0.1, 0.03, 0.01, . . .).

In gradient descent, the learning rate A is a hyperparameter we need to tune. Here are some things
that can go wrong:
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Terminology: Epoch and batch

- 1 epoch: All instances in training set are processed once to update weights of model

- Batch: Dataset partitioned into ‘batches’ that are multiple groups of equal size. Number and
size are important ‘hyper parameters’

- If all observations in the training dataset is equal to the batches there is only one observation
per batch (batch-size = 1)
- Batch Gradient Descent is same as Stochastic Gradient Descent
- Batch Gradient Descent always converges

- There are performance trade-offs between batch size and number



Why not always use Batch Gradient Descent?

- Example: We have 10,000 data points and 10 features. SSE is as many terms as datpoints
so here 10,000

- We must compute the derivative and do 100,000 computations (10,000*10) per iteration
- Usually one takes around 1000 iterations; 100,000,000 computations (100,000*1000)
- The overhead is very large and thus convergence is slow and expensive

- Stochastic Gradient Descent to the rescue:
- When selecting data points at each step to calculate the derivatives, randomly pick one
data set at each iteration
- Reduces the computations enormously

Modified from: towardsdatascience.com



GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

Batch Gradient Descent Stochastic Gradient Descent
. Repeat until convergence:
Repeat until convergence: {
{ ) fori=1tom
forj=1ton

forj=1ton

wi=wj+aX,(® - wx(i))xjw

; 0)

wi=w; + a((y® — wx(i))xj )

For 1 batch For 1 epoch

Always converges Can take many epochs to converge, or never converge.

1 epoch means after one complete round (cycle)

Assuming there are m observations in one batch . . :
of processing the observations in the dataset.

S. Rafatirad



GD Update Rule for m observations (iteration)

There are 2 ways to deal with m observations and n attributes:

Batch Gradient Descent Stochastic Gradient Descent
. Repeat until convergence:
Repeat until convergence: {
{ . fori=1tom
forj=1ton ,
Fm (y® CIMO fory=1tm
W, =Ww;+ap,;- —wx\)x; . . ;
} j j i=1 j w= w; + a((y® — Wx(t))x](_t))
}
For 1 epoch
* Updates all the weights after processing one batch. * Updates all the weights after processing each
* The number of samples depends on the number of observation.
batches. * 1 epoch is one complete cycle of processing
* Every batch contains equal partition of the dataset the observations.
depending on the batch size. 16

Activity-Stochastic GD Example-1.ipynb S. Rafatirad



Diagnosing optimisation problems

To diagnose optimization problems, it's
useful to look at training curves: plot the
training cost as a function of iteration.

Warning: in general, it's very hard to tell from
the training curves whether an optimizer has
converged. They can reveal major problems,
but they can’t guarantee convergence.

J(w)

training
cost

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

convergence

iteration #
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As M increases, the magnitude of coefficients gets larger.
For M =9, the coefficients have become finely tuned to the data.

Between data points, the function exhibits large oscillations.



Reminder: Generalisation

Underfitting (M=0): model is too simple — does not fit the data.
Overfitting (M=9): model is too complex — fits perfectly.

—©— Training
—0— Test




P1: Local Min

Convex functions :

P3 : Global Min

- When selecting an optimization algorithm, it's
important to consider if the cost function is convex
or non-convex

f(x) a non-convex function with Local minima, Global minima and a Saddle point

- Convex:

- only one minima Not convex

- Non-convex:
- Several minima and e.g. saddle points

Convex




Convex functions continued

- How can we tell if a function f(x) is convex or
non-convex?

- Fortin range [0,1] then f(x) is convex in this
range if:

[tz + (= Do) > tf(21) + (1 —¢) f(22)
- Line segment between any two points on the

graph of the function lies above or on the graph
of the function, and not below it

tf (z1) + (L= ) f (22)

f(tey + (1 —t)as)

toy + (1 — )z

Graph of a convex function : https://en.wikipedia.org/wiki/Convex_function



f'(@) f"(a)

{ (@—a)+ ! (mia)2+f (a)

3!

0 £(n) (g
f(a) + (mfa)3+...:§:f ()(mia)n.
n=>0

n!

Newton’s Method for gradient descent (Newton-Raphson)

- Taylor Series is an expansion around a function f(x) into an infinite sum of terms.
Each term has a larger exponent like x, x?, x... increasingly approximating f(x)

~oi¥

- Taylor expanding around minirga. X ima -

N Isaac Newton  joseph Raphson
p N 1 (English 1600s)  (English 1600s)

f(x) = f(zx) + (x — x*) f/ (x*) + %(a: —xx) f (z%) + i(x — xx) f" (x%)...

flx)

1 1
= f(zx) + 5(1’ — x*)zf”(a:*) -+ §($ — x*) f"" (x%)...
- If x-x* is sma tne nigner oraer terms are negigioie

- b
flx)=a+ 5(:5 — z%)?
If the cost function is quadratic

fl(@) =blz —ax), f(x) =b

Adapted from siyavula.com



Newton’s Method for gradient descent (Newton-Raphson)

Newton’s method, als called ‘convex optimisation):

oJ(w)
ow;
witl = wl — A .

i 92J (w) o
(0w, )2 Second derivative
J

First derivative: Slope of the tangent line

} First derivative

Second derivative: Instantaneous rate of change of first
derivative. Sign of second derivative indicates if the slope
of the tangent line is increasing or decreasing

Pros:
- Fast: Quadratic convergence
- Generalises well

Cons:
- Varying robustness: Sometimes fails
- Some smoothness requirements
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Black: Gradient Descent
Blue: Newton’s method




Adding ‘momentum’ to gradient descent

In (stochastic) gradient descent with momentum, the update rule at each iteration is given by:
bi = p*bi—1 + g

0; =01 —yxb

Where:

e @ denotes the parameters to the cost function
e g; is the gradient indicating which direction to decrease the cost function by
e 7y is the hyperparameter representing the learning rate

« b; is the modified step direction term (as opposed to just using g;) that incorporates momentum

e [t is a new hyperparameter that denotes the momentum constant

A
mall momentum
Jw) | @ S g

1 A B C ¥

Source: Discovering Knowledge in Data, D. Larose



Adding ‘momentum’ to gradient descent

- Small pvalues:
- Reduce interia effect and impact of recent
adjustments
- Starting with low ¢ allows algorithm to explore
‘optimisation landscape’ more fully

- Larger p values:
- Allows algorithm to move in same direction as
previous adjustment
- Starting with high u helps speed-up convergence

- Commonly, momentum g is initialised (e.g. 0.9) and
tuned similar to learning rate A

Non-oscillating descent

Oscillating descent



Generalisation: Regularization

Regularization: Regularization reduces the variance at the cost of increasing the bias.

The degree M of the polynomial controls the model’s complexity.
- The value of M is a hyperparameter for polynomial expansion. We can tune it using a validation set.

- Restricting the number of parameters (e.g. M in polynomial example from before) is a crude approach to controlling
the model complexity.

- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

- Alot of common loss and regularization functions are convex functions, for example:
- L1 ‘lasso’ regularization
- L2 ‘ridge regression’ regularization



L1 and L2 regularization are convex functions

L1 Lasso: Sum of absolute values of the coefficient
n n

J(w) = - Z(yz —9:)% + )\Z |wil
N\ z:lY Y =1 J

MSE Penalty term
Encourages weights to be exactly zero

Minima after
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L2 ‘Ridge’: Squared magnitude of the coefficient
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L1 and L2 regularization: Takeaways

- We can encourage the weights to be small by choosing as our regularizer the L2 penalty.

- Note: To be precise, the L2 norm is Euclidean distance, so we’re regularizing the squared L2
norm.

- The regularized cost function makes a tradeoff between fit to the data and the norm of the
weights.

- If you fit training data poorly, J is large. If your optimal weights have high values, R is large.
- Large A penalizes weight values more.

- Like M, A is a hyperparameter we can tune with a validation set.



Linear Classification: Categorical outputs
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Linear Classification: Categorical outputs

What do all these problems have in common?
- Categorical outputs, called labels (e.g. yes/no, dog/cat/other)
Assigning each input vector to one of a finite number of labels is called classification

Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog, happy/sad)

Multi-class classification: multiple possible labels

We will first look at binary problems, and discuss multi-class problems later in class



Classification vs. Regression

- Actually: We can use all we've covered so far ignoring the categorical nature!
- Suppose we have a binary problem: t € {—1,1}
- Assuming the standard model used for (linear) regression:

y(w) = f(x,w) = W'x

- Using Sum of Squared Error (SSE) as our cost function J(w):

J(w) = (4 — W'Xy)?
=1
- But...how do we predict a label this way..?



Classification vs. Regression

- One dimensional example (input x is 1-dim): Red or blue?
- The colors indicate labels:

- Blue plus denotes that x. is from the first class

- Red circle that x. is from the second class

R



Classification vs. Regression
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y
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- Our classifier has the form:

fx,w) =wy+wl'x

- Areasonable decision rule is:

. {1 if f(x,w) > 0.

—1 otherwise.

a

- Mathematically write as: y(x) _ Sign(wo +w X)



Classification vs. Regression

Jj=+l=—m>) —=y=-1
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- Mathematically write function as:

i

y(x) = sign(wy + w' x)

- This specifies a linear classifier: it has a linear boundary (hyperplane):

0=wy+wlx

- This hyperplane separates the space into two "half-spaces”



Decision plane in 1D: This is simply a threshold
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Decision plane in 2D: This is a line




Decision plane in 3D: This is a plane

- What about higher dimensions?



Geometric interpretation of decision boundary

A line through the origin and orthogonal to w: 0 = WTX
Shifted by w,: () — wo + wlx
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G. Shakhnarovich




Learning is estimating a "good” decision boundary

- Goal: Find w (direction) and w, (location) of the boundary

- We need a criteria that tell us how to select the parameters
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Cost functions are also used for linear classifiers

- In classification, the cost function is a metric for how
well the data is separated by the boundary (red line)

- Causes for non-perfect separation:

- Model is too simple (e.g. data is non-linear)

- Noise in the inputs (i.e., data attributes)

- Errors in data targets (mis-labeling)

- Simple features that do not account for all

variations

- We will cover more complex non-linear models later
in class



Binary Classification Algorithms

Functional Approach Statistical Approach Geometrical Approach
(Logistic Regression) (Naive Bayes) (Perceptron, SVM)
xM y®

| p(alp) = FEIDP@)
x™ y(n) P(B)

@
hg(x) =6, + olx(z) 0. g gnx(n) c’b




Logistic Regression or Linear Regression?

Consider a classification problems e.g.:
- Spam detection (1 or 0)
- Tumor detection (1 or 0)

- Mood detection (1 or 0) ;
If the hypothesis is a linear regression model: — »
Y = WX )
Inputs: X1,X2,X3 || Weights: ©1,02,03 || Outputs: Happy or Sad

y O — {O; predicted value < threshold Ml

Logistic Regression Model

1;  predicted value > threshold

Drawbacks of using linear regression for classification:
- Sensitive to outliers
- Sensitivity to selected threshold

Overall: Logistic Regression is a better way to perform classification!



Logistic Regression

Logistic Sigmoid Function

- When the goal is to classify the data points (samples) into
categories (or labels), you can use Logistic Regression _ 1
sigm(z) =

- Output: 0 or 1, or a probability estimate e = base of natural log

P
U0

- Logistic regression has the form of a sigmoid function
- S-shaped curve

- Maps a real value input to a value between 0 and 1 (probability of a binary I _,. o

outcome) -6 -4 -2 0
- Sigmoid function is also used as an activation function in Artificial Neural
Networks
- Sigmoid function is good for modeling non-linear relationships between the
input and the output def Singid(Z)Z

- The default threshold for logistic regression is 0.5

- Logistic regression is a special case of function expansion

return 1.0 / (1 + np.exp(-z))



Logistic Regression as a Basis Function Expansion

- Function expansion is a mathematical technique that involves approximating a complex
function by a simpler function that can be represented as a sum of simpler functions

- The ‘simpler functions’ are called Basis Functions
- Useful to simplify a complicated expression involving a complex function

- Logistic Regression is a special case of Function Expansion, where it models the probability
of the binary outcome as a logistic sigmoid function of a linear combination of input variables

z= fl;w) = wlhx=wyxy + wix; +..+ wyx,

1 ; 1
2 Tw)Y = ot T} =
— = gwTx®) = sigm (wTx) g
0if g(wTx®) < threshold
1ifg(wx®W) > threshold

9(z) = sigm(z) = 7



Logistic regression example

- The hours did each student study and sleep:

- Did the student pass (1) or fail (0)?

- The default threshold is 0.5

12

I 11 F;assed
10 - % oo .0. ° O.c mug Failed []
8 ® ® e % :.
= = 2 m e °
X . s %
& . "8, =
é i a By - " : ¢ :
2+ . . o . .“.... : ‘f.
ot - = e
- . . . . !
-2 0 2 4 6 8 10 12
Hours Slept
(9) 0 if passed < threshold
y = :
1 ¢f passed > threshold

Studied Slept Passed
4.85 9.63 1
8.62 3.23 0
5.43 8.23 1
9.21 6.34 0
1.0 y :
— Decision Bound
— Sigmoid
0.8 H
= 06 |---- 5
é threshold
204l 4
02}
0.0 L
—6 -4 -2 0 4 6
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Perceptron Learning Algorithm

- The Perceptron Learning Algorithm is supervised
learning that is good for binary classification wi = wj+a ( D _ g(z))

- The Perceptron model takes an input, aggregates it
(calculates the weighted sum), and with the step
function returns 1 if this is more than a threshold or
0 if it is equal or below

inputs

Z = WTx = Wy + W1 X4 <+ Wy X»

weighted
sum

o _[0if z<threshold
(2) = 1if z = threshold

unit step function

v
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=/
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Actlvatuon function
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Different activation functions

Aclivation Function  Equation Example 1D Graph
Linear (2) =2 Adaline, linear
¢ regression
r 4
mingws 5 R Perceptron
(Heaviside p(z)=< 05 z=0 varian‘t)
Function) 1 S5
—
# -1 z<0
Sign L, - Perceptron
(signum) ?@=0 250 apiant
g z>0 S
isti Logistic
Logistic 1 .
(s?gmoid) O R regression, ”
1+e Multilayer NN




Logistic Regression vs Perceptron Learning

Feature

Logistic Regression

Perceptron Learning

Decision Boundary

Smooth curve based on probabilities

Hyperplane based on linear function

Output Values

Probabilities ranging from O0to 1

Either-1and1orOand 1

Training Algorithm

Gradient-based optimization

Iterative update rule

Convergence

Guaranteed to converge for convex
optimization problems.

May not converge if data is not linearly
separable

Linear Separability

Handles both linearly separable and
non-linearly separable data

Can only handle linearly separable
data

Regularization

Can be regularized to prevent
overfitting using penalty term

Does not have built-in regularization
mechanism




The Perceptron

McCulloch—Pitts neuron

NEW NAVY DEVIGE
LEARNS BY DOING

Psychologist Shows Embryo’
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July T (UPI)
—The Nayvy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, writa,
roproduce Itself and bs con-
sclous of its existence,

The emb the Weather
Bureau's $2,000000 "704™ com-
putcr--karr«l to differentiate
between right and left after
fifty eftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first

of it5 Perceptron thinking ma-|
chines that will be adle to read,
and write, It is expected to bcv

finished in about a year at &
roak af 100 000 |

|

Warren Mcoch (US)
1898-1969

Bulletn of Mathematical Bology Vol 52, No. 112, p. 9115, 1990
Printedin Great Betin

0092-524019053.0040.00
Pergimon Pres plc
Socety for Matheratical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

® WARREN S. MCCULLOCH AND WALTER PiTTs
University of Iliinois, College of Medicine,
Department of Psychiatry at the Iilinois Neuropsychiatric Institute,
University of Chicago, Chicago, US.A.

Bocauofthe sl-onnone” character o I the a
them can be treated by means of logic. Itis found that 1y net can
be described in these terms, with the addition. of more complicated logical means for nets

rany necan finda
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.

1. i Tt i hysi rests on certain cardinal
assumptions. The nervous system is a net of neurons, each having a soma and
an axon. Their adjunctions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some threshold,
which excitation must exceed to initiate an impulse. This, except for the fact
and the time of its occurence, is determined by the neuron, not by the
excitation. From the point of excitation the impulse is propagated to all parts of
the neuron. The velocity along the axon varies directly with its diameter, from
<1 ms™ " in thin axons, which are usually short, to > 150 ms ™! in thick axons,
which are usually long. The time for axonal conduction is consequently of little
importance in determining the time of arrival of impulses at points unequally
remote from the same source. Excitation across synapses occuts predominant-
ly from axonal ions to somata. It is still a moot point whether this

Walter Pitts (US)
1923-1969

1943




Al ‘spring’ and ‘winter’

Rosenblatt's Book

Principles of Neurodynamics

Relative frequency

Rosenblatt's Perceptron
on IBM 704

Al:Darmouth Meeting

A.l. Winter

T Backpropagation

"Perceptrons"
Minsky & Papert

Hopfield model

Neocognitron

A.l. Winter

AlphaZero

!

Deep Learning

1940 ~ 1960 1980

Time (year)

2000

Richard Sole

2020



Introduction to Neural Networks

Ramoén y Cajal

Neurons are individual brain cells.
Neurons send and receive information.




Neural Network: Layers

* A NN consists of a layered, feedforward, completely
connected network of neurons.

* Layers : input layer, hidden layer, output layer

* A Feed-Forward NN (FFNN) is composed of two or more
layers, but mostly 3 layers, with activation functions
usually step or logistic function.

* Multi-Layer-Perceptron (MLP) has three or more layers.

* Perceptron Learning is a NN without a hidden later, (i.e.,
with two layers of input and output). It is good for
emulating the functionality of logical AND and OR, but not
good for XOR problem.

Inputs

Hidden

Output(s)



Neural Network: Layers

* Some networks may have more than one hidden layers,
but in general 1-2 hidden layers is sufficient.

* Too many hidden layers increases the complexity of the
model and training time, especially when the “error” is
propagated backwards.

* Increasing the number of hidden layers leads to
creating a Deep Neural Network (DNN).

Inputs

Hidden

Qutput(s)



Neural Network: Activation Function

‘ z . . . Hidden
* The activation function in NN makes them non-linear

Inputs Qutput(s)
regressors. ‘
* A NN without an activation function is a linear regressor. @
So, The final layer can be another logistic O

regression/perceptron (such as sigmoid, tanh, or softmax)

or a linear regression model (such as no activation O
function) depending whether it is a classification or

regression problem.






