


Intended Learning Outcomes

- Discuss pros/cons of various activation functions and apply them in simple examples

- Discuss aspects of neural networks e.g. layers and nodes

- Describe and apply feature engineering methodologies such as normalisation and label
encoding (one-hot and one-output)

- Describe and demonstrate the workings of a feed forward neural network in terms of how a
single node is updated (linear combination of inputs and activation function)



Golgi’s drawing of
a cerebellar Type |l cell,

Th e n e u ro n now called a Golgi cell

- Nobel prize 1906: Golgi (method) & Cajal
(insights) for structure of the brain and spinal cord

- Functional localization: Different parts of e.g. the
nervous system

- The neuron doctrine: The brain and spinal cord
are made up of individual elements, called
neurons.

- Neurons touch one another, but don’t fuse

Anthropomorphism: the attribution of human characteristics or behavior to a god, animal, or object

Camillo Santiago
Golgi (Italy) Ramon Cajal
1843-1926 (Spain)

1852-1934
Beware

anthropomorphism

MIT News

Study urges caution when comparing neural
networks to the brain

Computing systems that appear to generate brain-like activity may be the
result of researchers guiding them to a specific outcome.

MIT News Office




Perceptron Learning Algorithm recapitulation

W.:W.+a( @ X(i);w)x()
- The Perceptron Learning Algorithm is supervised J J y g( ) J
learning that is good for binary classification wj = w; + a( @) _ g(z))

- The Perceptron model takes an input, aggregates it
(calculates the weighted sum), and with the step
function returns 1 if this is more than a threshold or
0 if it is equal or below

inputs

Z = WTx = Wy + W1Xq <+ WoX»

_[0if z<threshold
9(z) = 1if z = threshold

ataspinar.com



Example: Perceptron

- Goal: Get perceptron to predict classes from data that we can encode

as 1 or 0 (e.g. pass/fail from continuous data of hours studied and Zf::‘ed :':Zt :assed
Slept) 8.62 3.23 0

- If we had a regression problem, we would have continuous labels 543 823 1
(not just 1 and 0), and would build a model etc: e L

z=W X =wgl + wiz1 + waxo + w3xT + Wyx4

©
- However, with classes as labels we use a threshold encoded as an
activation function g(z) in the perceptron, that takes z (providing
continuous output) and returns a class:

_|0if z < threshold 9(z)
9(z) = 1if z = threshold



Changes in the activation function

10

0.8 H

g(z)

0.4

0.2+

0.0

— Decision Bound
— Sigmoid

=== Unit step

thre

ashold

inputs

@\weights

Wy

O~

W,

W3

O

Wy

X

Insert activation
weighted / funCt'On .

sum

- The ‘activation function’ g(z) is what translates the z into the classes.
- We can change the function used in the activation function

© Copyright 2017 Revision 43e12019. Read the Docs



Different activation functions we’ve seen...

Activation Function Equation Example 1D Graph
i )(2) = 2 Adaline, linear
P regression
rO z<0
Unit Step .
(Heaviside  ¢(z)= < 0.5 z=0 | croeption
Function) 1 2>0
—
g -1 z<0
Sign L % Perceptron
(signum) ¢4 0 =0 \ariant
] z>0 ————
F Logistic
Logistic 1 : e
( ;gm oid) (1 regression, =
1+e Multilayer NN




Activation functions continued.

- Non-linearity in Neural Networks is
introduced using Activation Functions

- Allows learning complex patterns in data
- Determine the output of a NN
- Determine whether a neuron should “fire”

- Non-Linear activation functions help the model
to generalize to a variety of data

- A NN without an activation function is a
linear regressor

Activation Function Equation Example 1D Graph
i (z) =2 Adaline, linear ~ R
® regression ;
Sl Shop 0 G Perceptron
(Heaviside  ¢(z)= <4 0.5 z=0 =% vEmm D
Function) 1 250
-1 z<0
Sign i - Perceptron
(signum) ¢(2)= 0 z2=0 variant
1 z>0 —
0 zs-Y%
Piece-wise 2 3 ., Support vector :'
Linear Py zr% RS2SR machine
1 z2%
S Logistic
Logistic 1 " P
(soigmoi d) ¢(z)= n regression, .
1+e Multilayer NN
Hyperbolic _ e*-ge? Multilayer NN,
Tangent p(z)= RNNs
(tanh) e’+e*
0 z<0  Mulilayer NN,
RelLU ¢(z)= CNNs
z z>0




More on activation functions...
Formuia | OuputRange |Advantages | Oisdvantages

Sigmoid
fix)=1/(1+e¥

RelLU

f(x) = max(0, x)
Leaky RelLU

f(x) = max(ax, x)

Tanh
f(x) = (- e%) / (eX + &)

Softmax

f(xi) = exp(x) /Z(exp(xi))
Softplus

f(x)=log(1 + e¥)

Swish
f(x) = x/(1 + ebeta”x)

Oto1l

0to +oo

—oo to +o0

-1tol

Oto1l

0 to +oo

—oo to +o0

* output a probability
* Simple to compute

* Simple to compute
* Non-saturating

* Solves the dying ReLU problem
* Non-saturating

¢ Useful when you need to output a value
between -1 and 1
* mainly used for binary classification

Useful to get output probabilities for
multiple classes.

¢ Similar to ReLU, but smoother and
differentiable everywhere, which can
make it easier to optimize.

* non-saturating

e simple to compute.

* Canimprove performance compared to
ReLU and sigmoid.
* Simple to compute.

can cause vanishing gradient problem which
can slow down training in deep networks
(DNN)

can cause dying ReLU problem (neurons that
output 0 for any input value < 0)

can cause vanishing gradient problem which

can slow down training in DNNs

Can suffer from numerical instability.

Can cause vanishing gradient problem for
large negative input values, which can slow
down training in deep networks.

Requires tuning the beta parameter.

Note: More details than you need in L6. We will return to
activation functions when the context arises!



Neural Network: Layer context

We will cover the neural network concepts:
- layers, feedforward and ‘fully connected networks’
- Types of layers: input, hidden and output layer
- Feed-Forward NN (FFNN): composed of two or more
layers (mostly 3), with activation functions that are usually
step or logistic function
- Multi-Layer-Perceptron (MLP): has three or more layers
- Perceptron Learning is a NN without a hidden later, (i.e.,
two layers that are input and output)
- Good for emulating the functionality of logical AND
and OR, but not good for XOR problem (Boolean
functions)

towardsdatasicence.com

Inputs

Hidden

Output(s)



Neural Network: Layer context

- For most tasks 1-2 hidden layers are sufficient

- Too many hidden layers increases the complexity of the
model and likely the training time, especially when the
“error” is propagated backwards (backpropagation)

- With increasing numbers of hidden layers we have a
“Deep” Neural Network (DNN)

Inputs

Hidden

Output(s)



Feed-forward Neural Network (FFNN) :
‘Neurons’ or ‘Nodes’

Hidden

« Number of nodes in the input layer depends on the Inputs Output(s)
number of dataset attributes .

* The number of nodes in the output layer may be more
than 1 depending on the classification task. How many
nodes needed if the class variable has three labels?

* The number of nodes in the hidden layer depends on the { ‘
complexity of the pattern. An overly large number of
nodes can cause overfitting. |

* In case of overfitting, reduce the number of nodes in the EJ)/
hidden layer.

* In case of low accuracy, increase the number of nodes in
the hidden layer.

* Determined by Trial-and-error



Classification Feed-forward Neural Network (FFNN) :

‘Neurons’ or ‘Nodes’

Number of nodes in the input layer is given by the number of

dataset attributes

The number of nodes in the output layer may be more than 1
depending on the classification task

The number of nodes in the hidden layer depends on the
classification task (read: the data)

An overly large number of nodes can cause overfitting
If overfitting: reduce the number of nodes in the hidden
layer

If low accuracy: increase the number of nodes in

the hidden layer

Determined by Trial-and-error

Inputs

Output(s)



import keras
from keras.models import Sequential
from keras.layers import Dense

# define the number of input nodes, hidden nodes, and output
nodes

input_dim = 5

hidden_dim 10

output_dim 1

# create a sequential model
model = Sequential()

# add the input layer with RelLU activation function
model.add(Dense(hidden_dim, input_dim=input_dim,
activation='relu'))

# add a hidden layer with RelLU activation function
model.add(Dense(hidden_dim, activation='relu'))

# add the output layer with sigmoid activation function
model.add(Dense(output_dim, activation='sigmoid'))

# compile the model with binary cross—-entropy loss function
and Adam optimizer
model. compile(loss="'binary_crossentropy', optimizer="'adam')

# train the model on the training data
model. fit(X_train, y_train, epochs=100, batch_size=32,
validation_data=(X_test, y_test))

Output(s)

- A‘fully connected’ Feedforward
Neural Network (FFNN):

Every node is connected to

every node in the next layer

Weights are valued between

0 and 1




Neural Networks (NN): Pros and Cons

Pros:

- Robust and resilient to noise
- Can model non-linearity

Cons:

- Black-box nature (mostly)

- Prone to overfitting

- Computationally intensive

- Data Requirement

- Hyperparameter tuning

- Standardizing all input attributes

>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-@.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler()
>>> print(scaler.data_max_)

[ 1. 18.]
>>> print(scaler.transform(data))

[[6. 0. 1]
[0.25 25]
[0.5 51

[E1s 11
>>> print(scaler.transform([[2, 2]]))
L[1:5 @. 1]

0.
0.
1.



Feature engineering for NNs: Normalising

- Feature engineering is another name for pre-processing
- Reacall:

- Standardizing with z-score (standard normal (aj — ,LL)
distribution with a mean (u) of 0 and a standard & —
deviation (o) of 1), and o

- Normalising aka min-max scaling (X__rescales the

feature to a fixed range, usually O to 1)

- NNs usually perform better with min-max scaling (X _ Xmm)
Normalization is useful if know the distribution is not ~ Xnorm = X X
Gaussian or when you need to bound values ( T min)

Note: normalisation is sensitive to outliers since the
minimum and maximum values are used for scaling



Feature engineering for NNs: Categorical data

- Categorical variables allow a neural network to understand and represent discrete
features of the data:

E.g.: Day of the week, color, country

- Learning the representations of categories is largely more generalisable with NNs

- Label Encoding assigns a unique numerical value to categorical data.

It assumes an ordered relationship between the categories, so it is not good for
encoding nominal attributes

Example: Feedback variable taking labels of ‘bad’, ‘good’, and ‘excellent’ taking
values of ‘0°,’1’, ‘2’

Not recommended for NN due to introducing bias; one-hot encoding is more
preferred.

Drawback: Arbitrary Ordering can lead to incorrect interpretations



Feature engineering for NNs: Categorical data

- One-hot Encoding is a technique used to represent categorical data as numerical input (i.e.,
binary vectors) in machine learning.
- Each label/category in a categorical variable (such as ‘color’) is represented as a binary
vector with one element set to 1 and all other elements set to 0
- Example one-hot encoding:
- Attribute ‘color’ can be ‘red’,’green’, and ‘blue’. The number of labels is 3. You need (k-1
= 2) ‘flag variables’
- Using one-hot encoding, you can remove ‘color’ column from the dataset and add three
columns of ‘red’, ‘green’ and ‘blue’
- Drawback: it can lead to high-dimensional sparse data, where most of the elements in the

encoded vector are zero
One-hot d1 d2 d3
encoding
0 0
l >
0 0

Towardsdatascience.com




One-Hot vs. label encoder

from sklearn.preprocessing import
OneHotEncoder
import numpy as np

# create a sample categorical data

]blue',

data = np.array(['red', 'green',
'blue', 'red']).reshape(-1, 1)

# create an instance of the encoder
encoder = OneHotEncoder()

encoder to the data and trans

# convert the encoded data to a numpy array

data_encoded = data_encoded.toarray()

# print the encoded data
print(data_encoded)

[[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.1]

from sklearn.preprocessing import

LabelEncoder
import numpy as np

F create
data = np.array(['red’,
'blue', 'red'l).reshape(-1, 1)

# create an instance of

encoder = LabelEncodef()

- the encoder to the
the data

data_ehtoded =

and

a sample categorical data
‘green’,

'blue’,

transform

encoder.fit_transform(data.ravel())

# print the encoded data
print(data_encoded)

[2 100 2]




One-output Node Application

Inputs

- Good for binary classification (0/1 or win/lose) O
- One output node is also good when the output ©
classes are ordered o

- In this case, works for multi-class classification

-  Example: 1, 2, or 3rd place

- The ‘order’ is used as a continuous or discrete

numeric value
if 0 < output < thresholdl : classify 1st place

if threshold1 < output < threshold?2 : classify 2nd place
if threshold2 < output : classify 3rd place

Hidden
Qutput(s)



1-of-n output Encoding

- There is more than one output node in the output layer (Y) st 1q Inputs - (n;) - s outputs

- Output classes are not ordered (i.e., nominal) e.g., gender:
{male, female, unknown}

- Each output node corresponds to one class label, quantified
with a probability

- Benefit: it provides probabilities used as a measure of
confidence in the classification




Feed-Forward Neural Network: Combination Function

- The ‘feedforward’ combination function in a neural network is the operation used to compute
the input to a neuron in a given layer from the outputs of the neurons in the previous layer

- The equation describes how data flows through the network during the forward pass

- First: Linear Combination of Inputs: z = wix1 + waxy + ... + wpTy + b
- Here, z values are also known as the neuron's ‘pre-activation’ values, and referred to as
a ‘net’, sum, or 2

- Second: Introduce the activation function to z
- Pass the z, or ‘pre-activation’ values to the activation function (e.g. sigmoid, unit step)

- Third: Propagate to the next layer



Feed-Forward Neural Network: Combination Function

Nx4 input matrix

N: number of samples

4: number of attributes including x
Xo is 1 by convention

ORI ORI I TGN ORIV}
_x(gn) - xgn)_ _1 & xs()n)_

M
y(i) = Z ijj(i) = Wq t+ a)le) += a)zxéi) =+ ngéi)
Jj=0



Feed-Forward Neural Network: Combination Function

Input layer Hidden layer
Woa Output layer
(1)
X1
output
(1)
X2
Inside one node ‘N’: each
has the Linear Combination
of Inputs (left) and activation
X§1) (right)




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Ix(gl) xf) x§1) xél)] ll x1(1) x£1) x;nl Woa =0.5 Wog =0.7 | wpz=0.5
: : =1: - Wip = 0.6 Wi = 0.9 WAZ=O'9
W2A=O.8 WZB=O.8 WBZ=0'9
W3,=0.6 w3z=0.4
Hidden layer
Input layer Wi y Output layer wy: the v!/eight associated with the ith input
to node j

x;: ith input to node j

output




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Hidden layer
Woa Output layer

Input layer

Calculate the scalar value passed to a node |
through Linear Combination of Inputs:

output ; 0
net( )j = z ijxkj
k

For node NA: "
1
net! )A = wp; + wlij) + wzsz(il) + a)3jx$)




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Hidden layer
Woa Output layer

Input layer

Calculate the scalar value passed to a node |
through Linear Combination of Inputs:

output ; 0
net( )j = z ijxkj
k

For node NA: "
1
net! )A = wp; + wlij) + wzsz(il) + a)3jx$)




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Hidden layer
Woa Output layer

Input layer

Calculate the scalar value passed to a node |
through Linear Combination of Inputs:

output ; 0
net( )j = z ijxkj
k

For node NA: "
1
net! )A = wp; + wlij) + wzsz(il) + a)3jx$)




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Input layer Hidden layer
Woa Output layer )
x® " Calculate the scalar value passed to a node j
1A . . f
o = through Linear Combination of Inputs:
1B
output ; .
net®; = z ijxk(]‘.)
k
For node NA: .
net(l)A = wp; + wlij) + wzsz(l.l) + w3]-x§})



Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Input layer Hidden layer
Woa Output layer )
x® v N Calculate the scalar value passed to a node j
1A . . f
o ——— through Linear Combination of Inputs:
1B : Waz output 0] 0]
net‘’; = z Wi j Xy j
k
For node NA: .
net(l)A = wp; + wlij) + wzsz(l.l) + w3]-x§})




Feed-Forward Neural Network: Combination Function

Initiate weights randomly

Woa =0.5 Wog =0.7 | wgz=0.5 wj;: the weight associated with the it input
to node j
Xx;: ith input to node j

- Wip = 0.6 Wqg = 0.9 WAZ=0'9

ngn NOENO xg)] ll NOENO xﬂ

X P 1 x W,,=0.8 w2=0.8 | wg=0.9

W3A=0.6 W3B=O.4

Input layer Hidden layer
Woa Output layer .
P _’0 v NAL Calculate the scalar value passed to a node j
1A . . f
——— through Linear Combination of Inputs:
net‘’; = z Wi j Xy j
k
For node NA:

net®, = wo; + wlij) + wzsz(l.l) + w3]-x§}) = 1.32




Feed-Forward Neural Network: Combination Function

Our scalar value passed to a node NA through Linear Combination of Inputs:

net )y = Woj + wqjX; x& ) + wzsz(ll) + a)3]x§? = 1.32

The input (1.32) is now given to the activation function g e.g. a sigmoid such that in general:

Y=g = g(net;)
For NA, the result now becomes: ]
Similarly for NB, going through the Linear Combination of Inputs for node NB:
1
g(netB) = 1_|_€——n6‘t13 = (0.8176

We then for the next layer would repeat the process until we reach the output layer...



Feed-Forward Neural Network: Combination Function

Woa =0.5 Wog =0.7 Woz=0.5

From NA and NB we have 0.7892 and 0.8176 (effective our x,,, and x.) Win =06 | Wi =09 |wem09

nd weights w _ , w,_ and in the tabl A o W08 W08 | w09
a eights w, , w,,and w,, are in the table woos Twacoa

We calculate the Linear Combination of Inputs in NZ as:
net®, = Z WizX s = woz + wazxsy + wpzx sy = 0.5 +0.9(0.7892) + 0.9(0.8176)
k

This again is passed to the activation function g:

1
g(nety) = [+ o To461 = 0.8750

Hidden layer
Woa Output layer

Input layer

output
Output from the NN for pass 1

through the network, and it is the
predicted value for the first
observation in the dataset D.




Emulating Boolean Functions with a NN

Logical Gates

Name NOT AND NAND OR NOR XOR XNOR

Alg. Expr. A AB AB A+B A+B A® B A®B

:
:
v
v

orabol | & {0+ 1> | D

>

Truth y 1
Table 0
1

S | A
e ==l - -]
—_— O = O P
- o o
—_ 0 - O P
S e e | A
- - 0 Ol ™
—_ 0 = O P
— - O Ol W
—_ 0 - O P
S SO | A
- - 0 Ol =
_ O = O P
c——@x
- - O Ol =
—_ 0 = Ol »
N — I — B -

Source: https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215¢71a49




