ECS171: Machine Learning

L6 Supervised Classifiers

Instructor: Prof. Maike Sonnewald TAs: Pu Sun & Devashree Kataria

Intended Learning Outcomes

- Discuss pros/cons of various activation functions and apply them in simple examples
- Discuss aspects of neural networks e.g. layers and nodes
- Describe and apply feature engineering methodologies such as normalisation and label encoding (one-hot and one-output)
- Describe and demonstrate the workings of a feed forward neural network in terms of how a single node is updated (linear combination of inputs and activation function)

The neuron

Golgi's drawing of a cerebellar Type II cell, now called a Golgi cell

- Nobel prize 1906: Golgi (method) & Cajal -(insights) for structure of the brain and spinal cord
- Functional localization: Different parts of e.g. the nervous system
- The neuron doctrine: The brain and spinal cord are made up of individual elements, called neurons.
 - Neurons touch one another, but don't fuse

Beware anthropomorphism **MIT News** SUBSCRIB Study urges caution when comparing neural networks to the brain Computing systems that appear to generate brain-like activity may be the result of researchers guiding them to a specific outcome. Anne Trafton | MIT News Office November 2 2023

Anthropomorphism: the attribution of human characteristics or behavior to a god, animal, or object

Santiago Ramon Cajal (Spain) 1852-1934

Camillo Golgi (Italy) 1843-1926

Perceptron Learning Algorithm recapitulation

- The Perceptron Learning Algorithm is supervised learning that is good for binary classification
- The Perceptron model takes an input, aggregates it (calculates the weighted sum), and with the step function returns 1 if this is more than a threshold or 0 if it is equal or below

$$w_{j} = w_{j} + a \left(y^{(i)} - g(x^{(i)}; w) \right) x_{j}^{(i)}$$
$$w_{j} = w_{j} + a \left(y^{(i)} - g(z) \right) x_{j}^{(i)}$$

$$z = w^T x = w_0 + w_1 x_1 + w_2 x_2$$

 $g(z) = \begin{cases} 0 \ if \ z < threshold \\ 1 \ if \ z \ge threshold \end{cases}$

ataspinar.com

Example: Perceptron

weighted

- Goal: Get perceptron to predict classes from data that we can encode as 1 or 0 (e.g. pass/fail from continuous data of hours studied and slept)
- If we had a **regression problem**, we would have continuous labels (not just 1 and 0), and would build a model etc:

 $z = \mathbf{w}^T \mathbf{x} = w_0 \mathbf{1} + w_1 x_1 + w_2 x_2 + w_3 x + w_4 x_4$

- However, with classes as labels we use a threshold encoded as an activation function g(z) in the perceptron, that takes z (providing continuous output) and returns a class:

$$g(z) = \begin{cases} 0 & if z < threshold \\ 1 & if z \ge threshold \end{cases}$$

Changes in the activation function

- The 'activation function' g(z) is what translates the z into the classes.
- We can change the function used in the activation function

Different activation functions we've seen...

Activation Funct	ion Equ	ation	E	xample	1D Graph
Linear	$\phi(z$	z) = z	, r	Adaline, linear egression	
Unit Step (Heaviside a Function)	$\phi(z) = \begin{cases} \\ \\ \\ \\ \end{cases}$	0 z 0.5 z 1 z	< 0 = 0 > 0	Perceptron variant	-
Sign (signum)	φ(z)= {	-1 z 0 z 1 z	< 0 = 0 > 0	Perceptron variant	
Logistic (sigmoid)	φ(z)= -	1 1 + e ^{-z}	– r M	ogistic egression, Multilayer NN	-

Activation functions continued.

- Non-linearity in Neural Networks is introduced using Activation Functions
- Allows learning complex patterns in data
- Determine the output of a NN
- Determine whether a neuron should "fire"
- Non-Linear activation functions help the model to generalize to a variety of data
- A NN without an activation function is a linear regressor

Activation Fund	tion Equation	1	Example	1D Graph
Linear	$\phi(z) = z$	z	Adaline, linear regression	
Unit Step (Heaviside Function)	$\phi(z) = \begin{cases} 0\\ 0.5\\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	_
Sign (signum)	$\phi(z) = \begin{cases} -1 \\ 0 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	_
Piece-wise Linear ϕ	$p(z) = \begin{cases} 0 \\ z + \frac{1}{2} \\ 1 \end{cases}$	$Z \leq -\frac{1}{2}$ $-\frac{1}{2} \leq Z \leq \frac{1}{2}$ $Z \geq \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	φ(z)=	1 • e ^{-z}	Logistic regression, Multilayer NN	+
Hyperbolic Tangent (tanh)	$\phi(z) = \frac{e^z}{e^z}$	- e ^{-z}	Multilayer NN, RNNs	
ReLU	$\phi(z) = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	$ \downarrow $

More on activation functions...

Formula	Output Range	Advantages	Disadvantages
Sigmoid f(x) = 1 / (1 + e ^{-x})	0 to 1	output a probabilitySimple to compute	can cause vanishing gradient problem which can slow down training in deep networks (DNN)
ReLU f(x) = max(0, x)	0 to +∞	Simple to computeNon-saturating	can cause dying ReLU problem (neurons that output 0 for any input value < 0)
Leaky ReLU f(x) = max(αx, x)	$-\infty$ to $+\infty$	Solves the dying ReLU problemNon-saturating	
Tanh f(x) = $(e^{x} - e^{-x}) / (e^{x} + e^{-x})$	-1 to 1	 Useful when you need to output a value between -1 and 1 mainly used for binary classification 	can cause vanishing gradient problem which can slow down training in DNNs
Softmax $f(x_i) = exp(x_i) / \Sigma(exp(x_i))$	0 to 1	Useful to get output probabilities for multiple classes.	Can suffer from numerical instability.
Softplus f(x)= log(1 + e ^x)	0 to +∞	 Similar to ReLU, but smoother and differentiable everywhere, which can make it easier to optimize. non-saturating simple to compute. 	Can cause vanishing gradient problem for large negative input values, which can slow down training in deep networks.
Swish $f(x) = x/(1 + e^{-beta * x})$	$-\infty$ to $+\infty$	Can improve performance compared to ReLU and sigmoid.Simple to compute.	Requires tuning the beta parameter.

Note: More details than you need in L6. We will return to activation functions when the context arises!

Neural Network: Layer context

- We will cover the neural network concepts:
 - layers, feedforward and 'fully connected networks'
- Types of layers: input, hidden and output layer
- Feed-Forward NN (FFNN): composed of two or more layers (mostly 3), with activation functions that are usually step or logistic function
- Multi-Layer-Perceptron (MLP): has three or more layers
- Perceptron Learning is a NN without a hidden later, (i.e., two layers that are input and output)
 - Good for emulating the functionality of logical AND and OR, but not good for XOR problem (Boolean functions)

Neural Network: Layer context

- For most tasks 1-2 hidden layers are sufficient
- Too many hidden layers increases the complexity of the model and likely the training time, especially when the "error" is propagated backwards (backpropagation)
- With increasing numbers of hidden layers we have a "Deep" Neural Network (DNN)

Feed-forward Neural Network (FFNN) : 'Neurons' or 'Nodes'

- Number of nodes in the input layer depends on the number of dataset attributes
- The number of nodes in the output layer may be more than 1 depending on the classification task. How many nodes needed if the class variable has three labels?
- The number of nodes in the hidden layer depends on the complexity of the pattern. An overly large number of nodes can cause overfitting.
 - In case of overfitting, reduce the number of nodes in the hidden layer.
 - In case of low accuracy, increase the number of nodes in the hidden layer.
 - Determined by Trial-and-error

Classification Feed-forward Neural Network (FFNN) : 'Neurons' or 'Nodes'

- Number of nodes in the input layer is given by the number of dataset attributes
- The number of nodes in the output layer may be more than 1 depending on the classification task
- The number of nodes in the hidden layer depends on the classification task (read: the data)
 - An overly large number of nodes can cause overfitting
 - If overfitting: reduce the number of nodes in the hidden layer
 - If low accuracy: increase the number of nodes in
 - the hidden layer
 - Determined by Trial-and-error

import keras
from keras.models import Sequential
from keras.layers import Dense

define the number of input nodes, hidden nodes, and output nodes input_dim = 5 hidden_dim = 10 output_dim = 1

```
# create a sequential model
model = Sequential()
```

add the input layer with ReLU activation function model.add(Dense(hidden_dim, input_dim=input_dim, activation='relu'))

add a hidden layer with ReLU activation function model.add(Dense(hidden_dim, activation='relu'))

add the output layer with sigmoid activation function model.add(Dense(output_dim, activation='sigmoid'))

compile the model with binary cross-entropy loss function and Adam optimizer model.compile(loss='binary_crossentropy', optimizer='adam')

train the model on the training data
model.fit(X_train, y_train, epochs=100, batch_size=32,
validation_data=(X_test, y_test))

- A 'fully connected' Feedforward Neural Network (FFNN):
 - Every node is connected to every node in the next layer
 - Weights are valued between
 0 and 1

Neural Networks (NN): Pros and Cons

Pros:

- Robust and resilient to noise
- Can model non-linearity

Cons:

- Black-box nature (mostly)
- Prone to overfitting
- Computationally intensive
- Data Requirement
- Hyperparameter tuning
- Standardizing all input attributes

```
>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler()
>>> print(scaler.data_max_)
[ 1. 18.]
>>> print(scaler.transform(data))
[[0. 0. ]
[0.25 0.25]
[0.5 0.5 ]
[1. 1. ]]
>>> print(scaler.transform([[2, 2]]))
[[1.5 0. ]]
```

Feature engineering for NNs: Normalising

- Feature engineering is another name for pre-processing
- Recall:
 - Standardizing with z-score (standard normal distribution with a mean (μ) of 0 and a standard deviation (σ) of 1), and
 - Normalising aka min-max scaling (X_{norm} rescales the feature to a fixed range, usually 0 to 1)
- NNs usually perform better with min-max scaling
 - Normalization is useful if know the distribution is not Gaussian or when you need to bound values
 - Note: normalisation is **sensitive to outliers** since the minimum and maximum values are used for scaling

 $z = rac{(x-\mu)}{\sigma}$

$$X_{
m norm} = rac{(X-X_{
m min})}{(X_{
m max}-X_{
m min})}$$

Feature engineering for NNs: Categorical data

- Categorical variables allow a neural network to understand and represent discrete features of the data:
 - E.g.: Day of the week, color, country
- Learning the representations of categories is largely more generalisable with NNs
- Label Encoding assigns a unique numerical value to categorical data.
 - It assumes an ordered relationship between the categories, so it is not good for encoding nominal attributes
 - Example: Feedback variable taking labels of 'bad', 'good', and 'excellent' taking values of '0','1', '2'
 - Not recommended for NN due to introducing bias; one-hot encoding is more preferred.
 - Drawback: Arbitrary Ordering can lead to incorrect interpretations

Feature engineering for NNs: Categorical data

- One-hot Encoding is a technique used to represent categorical data as numerical input (i.e., binary vectors) in machine learning.
 - Each label/category in a categorical variable (such as 'color') is represented as a binary vector with one element set to 1 and all other elements set to 0
- Example one-hot encoding:
 - Attribute 'color' can be 'red','green', and 'blue'. The number of labels is 3. You need (k-1 = 2) 'flag variables'
 - Using one-hot encoding, you can remove 'color' column from the dataset and add three columns of 'red', 'green' and 'blue'
- Drawback: it can lead to high-dimensional sparse data, where most of the elements in the encoded vector are zero

One-Hot vs. label encoder

```
from sklearn.preprocessing import
OneHotEncoder
import numpy as np
```

```
# create a sample categorical data
data = np.array(['red', 'green', 'blue',
'blue', 'red']).reshape(-1, 1)
```

```
# create an instance of the encoder
encoder = OneHotEncoder()
```

fit the encoder to the data and transform
the data
data_encoded = encoder.fit_transform(data)

```
# convert the encoded data to a numpy array
data_encoded = data_encoded.toarray()
```

```
# print the encoded data
print(data_encoded)
```

```
[[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[1. 0. 0.]
[0. 0. 1.]]
```

from sklearn.preprocessing import
LabelEncoder
import numpy as np

```
# create a sample categorical data
data = np.array(['red', 'green', 'blue',
'blue', 'red']).reshape(-1, 1)
```

```
# create an instance of the encoder
encoder = LabelEncoder()
```

fit the encoder to the data and transform
the data
data_encoded =
encoder.fit_transform(data.ravel())

print the encoded data
print(data_encoded)

[2 1 0 0 2]

One-output Node Application

- Good for binary classification (0/1 or win/lose)
- One output node is also good when the output classes are ordered
 - In this case, works for multi-class classification
 - Example: 1, 2, or 3rd place
 - The 'order' is used as a continuous or discrete numeric value

 $\begin{array}{ll} if \ 0 \leq output < threshold 1 & : classify \ 1st \ place \\ if \ threshold 1 \leq output < threshold 2 : classify \ 2nd \ place \\ if \ threshold 2 \leq output & : classify \ 3rd \ place \\ \end{array}$

1-of-n output Encoding

- There is more than one output node in the output layer (Y)
- Output classes are not ordered (i.e., nominal) e.g., gender: {male, female, unknown}
- Each output node corresponds to one class label, quantified with a probability
- Benefit: it provides probabilities used as a measure of **confidence** in the classification

- The 'feedforward' combination function in a neural network is the operation used to compute the input to a neuron in a given layer from the outputs of the neurons in the previous layer
- The equation describes how data flows through the network during the forward pass
- First: Linear Combination of Inputs: $z = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + b$
 - Here, z values are also known as the neuron's 'pre-activation' values, and referred to as a 'net', sum, or $\boldsymbol{\Sigma}$
- Second: Introduce the activation function to z
 - Pass the z, or 'pre-activation' values to the activation function (e.g. sigmoid, unit step)
- Third: Propagate to the next layer

Nx4 input matrix
N: number of samples
4: number of attributes including x₀
x₀ is 1 by convention

Initiate weights randomly

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

 w_{ij} : the weight associated with the *i*th input to node *j* x_{ij} : *i*th input to node *j*

w₂₄=0.8

w_{3A}=0.6

-			j
	w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
	w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9

w_{2B}=0.8

w_{3B}=0.4

w_{BZ}=0.9

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ij} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)}$$

w₂₄=0.8

w_{3A}=0.6

		5
w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9

 $W_{2B} = 0.8$

w_{3B}=0.4

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ii} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

w_{BZ}=0.9

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)}$$

w_{2A}=0.8

w_{3A}=0.6

	-	
w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9

w_{2B}=0.8

w_{3B}=0.4

w_{B7}=0.9

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ii} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)}$$

w_{2A}=0.8

w_{3A}=0.6

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9

w_{2B}=0.8

w_{3B}=0.4

w_{B7}=0.9

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ii} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)}$$

w_{3A}=0.6

		-
w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9

w_{3B}=0.4

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ij} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

For node NA:

1

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)}$$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

Initiate weights randomly

 w_{ij} : the weight associated with the ith input to node j x_{ii} : ith input to node j

Calculate the scalar value passed to a node j through Linear Combination of Inputs:

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)} = 1.32$$

Our scalar value passed to a node NA through Linear Combination of Inputs:

$$net^{(1)}{}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)} = 1.32$$

The input (1.32) is now given to the activation function g e.g. a sigmoid such that in general:

$$y = \frac{1}{1 + e^{-z}} = g(net_j)$$

For NA, the result now becomes:

$$g(net_A) = \frac{1}{1 + e^{-1.38}} = 0.7892$$

Similarly for NB, going through the Linear Combination of Inputs for node NB:

$$g(net_B) = \frac{1}{1 + e^{-net_B}} = 0.8176$$

We then for the *next* layer would repeat the process until we reach the output layer...

From NA and NB we have 0.7892 and 0.8176 (effective our x_{AZ} and x_{BZ}) and weights w_{07} , w_{AZ} and w_{BZ} are in the table

We calculate the Linear Combination of Inputs in NZ as:

$$net^{(1)}{}_{Z} = \sum_{k} w_{kZ} x_{kZ}^{(1)} = \omega_{0Z} + \omega_{AZ} x_{AZ}^{(1)} + \omega_{BZ} x_{BZ}^{(1)} = 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

This again is passed to the activation function g:

Output from the NN for pass 1 through the network, and it is the predicted value for the first observation in the dataset D.

Emulating Boolean Functions with a NN

Logical Gates

Name	N	OT		ANI)	1	NAN	D		OR			NOI	2		XOI	ł	XNOF			
Alg. Expr.		Ā		AB			\overline{AB}			A + I	3		$\overline{A+I}$	3	$A \oplus B$			$\overline{A \oplus B}$		3	
Symbol	A	≫_ <u>×</u>	A B	\supset	×						\succ									≫-	
Truth Table	A 0 1	X 1 0	B 0 1 1	A 0 1 0 1	X 0 0 1	B 0 0 1 1	A 0 1 0 1	X 1 1 1 0	B 0 0 1 1	A 0 1 0 1	X 0 1 1 1	B 0 0 1 1	A 0 1 0 1	X 1 0 0 0	B 0 1 1	A 0 1 0 1	X 0 1 1 0	B 0 0 1 1	A 0 1 0 1	X 1 0 0 1	

Source: https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49