
ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

MOCO Amsterdam garden

L6
Supervised Classifiers

Intended Learning Outcomes

- Discuss pros/cons of various activation functions and apply them in simple examples
- Discuss aspects of neural networks e.g. layers and nodes
- Describe and apply feature engineering methodologies such as normalisation and label

encoding (one-hot and one-output)
- Describe and demonstrate the workings of a feed forward neural network in terms of how a

single node is updated (linear combination of inputs and activation function)

The neuron

- Nobel prize 1906: Golgi (method) & Cajal
(insights) for structure of the brain and spinal cord

- Functional localization: Different parts of e.g. the
nervous system

- The neuron doctrine: The brain and spinal cord
are made up of individual elements, called
neurons.

- Neurons touch one another, but don’t fuse

Golgi’s drawing of
a cerebellar Type II cell,
now called a Golgi cell

Camillo
Golgi (Italy)
1843-1926

Santiago
Ramon Cajal

(Spain)
1852-1934

Beware
anthropomorphism

Anthropomorphism: the attribution of human characteristics or behavior to a god, animal, or object

Perceptron Learning Algorithm recapitulation

- The Perceptron Learning Algorithm is supervised
learning that is good for binary classification

- The Perceptron model takes an input, aggregates it
(calculates the weighted sum), and with the step
function returns 1 if this is more than a threshold or
0 if it is equal or below

ataspinar.com

Example: Perceptron

- Goal: Get perceptron to predict classes from data that we can encode
as 1 or 0 (e.g. pass/fail from continuous data of hours studied and
slept)

- If we had a regression problem, we would have continuous labels
(not just 1 and 0), and would build a model etc:

- However, with classes as labels we use a threshold encoded as an
activation function g(z) in the perceptron, that takes z (providing
continuous output) and returns a class:

z

Changes in the activation function

- The ‘activation function’ g(z) is what translates the z into the classes.
- We can change the function used in the activation function

?
g(z)

Unit step
Insert activation
function…

Different activation functions we’ve seen…

Activation functions continued.

- Non-linearity in Neural Networks is
introduced using Activation Functions

- Allows learning complex patterns in data

- Determine the output of a NN

- Determine whether a neuron should “fire”

- Non-Linear activation functions help the model
to generalize to a variety of data

- A NN without an activation function is a
linear regressor

More on activation functions…

Note: More details than you need in L6. We will return to
activation functions when the context arises!

Neural Network: Layer context

- We will cover the neural network concepts:
- layers, feedforward and ‘fully connected networks’

- Types of layers: input, hidden and output layer
- Feed-Forward NN (FFNN): composed of two or more

layers (mostly 3), with activation functions that are usually
step or logistic function

- Multi-Layer-Perceptron (MLP): has three or more layers
- Perceptron Learning is a NN without a hidden later, (i.e.,

two layers that are input and output)
- Good for emulating the functionality of logical AND

and OR, but not good for XOR problem (Boolean
functions)

towardsdatasicence.com

Neural Network: Layer context

- For most tasks 1-2 hidden layers are sufficient

- Too many hidden layers increases the complexity of the
model and likely the training time, especially when the
“error” is propagated backwards (backpropagation)

- With increasing numbers of hidden layers we have a
“Deep” Neural Network (DNN)

Feed-forward Neural Network (FFNN) :
‘Neurons’ or ‘Nodes’

Classification Feed-forward Neural Network (FFNN) :
‘Neurons’ or ‘Nodes’

- Number of nodes in the input layer is given by the number of
dataset attributes

- The number of nodes in the output layer may be more than 1
depending on the classification task

- The number of nodes in the hidden layer depends on the
classification task (read: the data)

- An overly large number of nodes can cause overfitting
- If overfitting: reduce the number of nodes in the hidden

layer
- If low accuracy: increase the number of nodes in
- the hidden layer
- Determined by Trial-and-error

- A ‘fully connected’ Feedforward
Neural Network (FFNN):

- Every node is connected to
every node in the next layer

- Weights are valued between
0 and 1

Neural Networks (NN): Pros and Cons

Pros:

- Robust and resilient to noise
- Can model non-linearity

Cons:

- Black-box nature (mostly)
- Prone to overfitting
- Computationally intensive
- Data Requirement
- Hyperparameter tuning
- Standardizing all input attributes

Feature engineering for NNs: Normalising

- Feature engineering is another name for pre-processing
- Recall:

- Standardizing with z-score (standard normal
distribution with a mean (μ) of 0 and a standard
deviation (σ) of 1), and

- Normalising aka min-max scaling (Xnorm rescales the
feature to a fixed range, usually 0 to 1)

- NNs usually perform better with min-max scaling
- Normalization is useful if know the distribution is not

Gaussian or when you need to bound values
- Note: normalisation is sensitive to outliers since the

minimum and maximum values are used for scaling

Feature engineering for NNs: Categorical data

- Categorical variables allow a neural network to understand and represent discrete
features of the data:

- E.g.: Day of the week, color, country

- Learning the representations of categories is largely more generalisable with NNs

- Label Encoding assigns a unique numerical value to categorical data.
- It assumes an ordered relationship between the categories, so it is not good for

encoding nominal attributes
- Example: Feedback variable taking labels of ‘bad’, ‘good’, and ‘excellent’ taking

values of ‘0’,’1’, ‘2’
- Not recommended for NN due to introducing bias; one-hot encoding is more

preferred.
- Drawback: Arbitrary Ordering can lead to incorrect interpretations

Feature engineering for NNs: Categorical data
- One-hot Encoding is a technique used to represent categorical data as numerical input (i.e.,

binary vectors) in machine learning.
- Each label/category in a categorical variable (such as ‘color’) is represented as a binary

vector with one element set to 1 and all other elements set to 0
- Example one-hot encoding:

- Attribute ‘color’ can be ‘red’,’green’, and ‘blue’. The number of labels is 3. You need (k-1
= 2) ‘flag variables’

- Using one-hot encoding, you can remove ‘color’ column from the dataset and add three
columns of ‘red’ , ‘green’ and ‘blue’

- Drawback: it can lead to high-dimensional sparse data, where most of the elements in the
encoded vector are zero

Towardsdatascience.com

One-Hot vs. label encoder

One-output Node Application

- Good for binary classification (0/1 or win/lose)

- One output node is also good when the output
classes are ordered

- In this case, works for multi-class classification
- Example: 1, 2, or 3rd place
- The ‘order’ is used as a continuous or discrete

numeric value

1-of-n output Encoding

- There is more than one output node in the output layer (Y)

- Output classes are not ordered (i.e., nominal) e.g., gender:
{male, female, unknown}

- Each output node corresponds to one class label, quantified
with a probability

- Benefit: it provides probabilities used as a measure of
confidence in the classification

Feed-Forward Neural Network: Combination Function

- The ‘feedforward’ combination function in a neural network is the operation used to compute
the input to a neuron in a given layer from the outputs of the neurons in the previous layer

- The equation describes how data flows through the network during the forward pass

- First: Linear Combination of Inputs:
- Here, z values are also known as the neuron's ‘pre-activation’ values, and referred to as

a ‘net’, sum, or Σ

- Second: Introduce the activation function to z
- Pass the z, or ‘pre-activation’ values to the activation function (e.g. sigmoid, unit step)

- Third: Propagate to the next layer

Feed-Forward Neural Network: Combination Function

Feed-Forward Neural Network: Combination Function

Inside one node ‘N’: each
has the Linear Combination
of Inputs (left) and activation
(right)

Feed-Forward Neural Network: Combination Function
Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function

Calculate the scalar value passed to a node j
through Linear Combination of Inputs:

For node NA:

Initiate weights randomly

Feed-Forward Neural Network: Combination Function
Our scalar value passed to a node NA through Linear Combination of Inputs:

The input (1.32) is now given to the activation function g e.g. a sigmoid such that in general:

For NA, the result now becomes:

Similarly for NB, going through the Linear Combination of Inputs for node NB:

We then for the next layer would repeat the process until we reach the output layer…

z

Feed-Forward Neural Network: Combination Function

From NA and NB we have 0.7892 and 0.8176 (effective our xAZ and xBZ)
and weights w0Z , wAZ and wBZ are in the table

We calculate the Linear Combination of Inputs in NZ as:

This again is passed to the activation function g:

Output from the NN for pass 1
through the network, and it is the
predicted value for the first
observation in the dataset D.

