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L7 Emulating Logical 
Gates with NNs and 
performance metrics for 
categorical models 



Intended learning outcomes

- Appreciate the concept of Boolean functions and how they relate to neural networks including 
perceptrons and multilayer perceptrons

- Apply and explain the reasoning behind the AND and NOR gate, as well as XOR
- Know the various metrics used for determining classification skill and how various 

combinations are beneficial for different use cases
- Be able to apply the calculations 



Recall: Feed-Forward pass in a neural network

- Process input data through the network to receive output
- The data flows only ‘forwards’ from the input layer
- In a ‘fully-connected’ network, such as a normal Multilayer 

Perceptron, every node in one layer is connected to every node in 
the next layer with an assigned weight

- In each node, we take the Linear Combination of Inputs (aka 
weighted sum):

-  The Linear Combination of Inputs z is passed through an ‘activation 
function’ to give the output from the given node

- This process is done for each node in a layer, and passed to the next 
layer 

Inside one node ‘N’: 
each has the Linear 
Combination of 
Inputs (left) and 
activation (right) 

N
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N
N
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Hike or no hike?

Input: Temperature (oC)

Output: Chance  of hike

We can model the curve with a NN



Are we going for a hike?



Are we going for a hike? ‘Softplus’ activation function

- Example using the ‘Softplus’
- The Softplus activation function is a smooth and 

continuously differentiable:

g(x) = log(1-ez)

- Maps negative values to zero and keeps positive 
values unchanged

- Being continuously differentiable can be beneficial for 
training

- Note: Softplus function tends to saturate for large 
positive input values which can lead to a ‘vanishing 
gradient’

pythonplainenglish.io



Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output
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Are we going for a hike?

Input Hidden 1 Hidden 2 Output
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𝚺 - Output is a probability
- For 1 Feed-Forward 

pass repeat for all data 
points



Boolean/logical venn diagrams

peakd.com

George Boole
(1800s UK)



Logical gates are also boolean functions

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49


Logical gates are also boolean functions

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron Perceptron

Multilayer Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49


Logical gate for the AND

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49


Neural Network as logical ‘AND’ gate

- A Perceptron is sufficient
- Goal: Find values for the weights such that the network acts like the AND 

gate as given by the ‘truth table’  
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- A Perceptron is sufficient
- Goal: Find values for the weights such that the network acts like the AND 

gate as given by the ‘truth table’ 
- Visually interpreted, the decision boundary from the truth table can be 

seen as a straight line

- NOTE: There is a linear decision boundary, thus the problem is linearly 
separable

Neural Network as logical ‘AND’ gate

Truth table



Neural Network as logical ‘AND’ gate

- To demonstrate, take a set of weights, w:

- Set up the four ‘cases’ in the truth table (recall the g(z)):

- The equation for the line separating the points is:

- You can take any values of the weights as long as the inequality is 
preserved

Truth table



Python implementation of AND gate



Logical gate for the NOR

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49


Neural Network as logical ‘NOR’ gate

- The implementation of the NOR gate is similar to the AND gate
- The truth table is now:

- Which we can graphically represent as:



Neural Network as logical ‘NOR’ gate

- Take the weights:

- The four cases are now:

- The equation for the line separating the points is:

- You can take any values of the weights as long as the inequality is preserved

 



Logical gate for the XOR

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49


Neural Network as logical ‘XOR’ gate

- The implementation of the XOR gate is different from the AND and NOR
- The truth table is now:

- The graphical representation is:

- There is no straight line determine to separate the points



Neural Network as logical ‘XOR’ gate: Problem!

- Work with weights:

- Set up the cases:

- Separability problem: We have no straight line separating the two… 



Possible Solutions for Separability Problem

- We need to add the capacity to allow non-linear decision boundaries 

1. Add a non-linear feature
a. This is referred to as the ‘kernel trick’ (Covered with SVM)

2. Add extra layers to allow non-linearity
a. Here we use a multilayer perceptron



The XOR gate is a combination of NOR and AND

XOR(x1,x2) can be thought of as NOR(NOR(x1,x2),AND(x1,x2))



Neural Network as a Logical XOR gate: Extra Layers

We now need to determine what the weights from the NOR node (N1) and AND node (N2) 
to the NOR node (Nz) need to be 



Neural Network as a Logical XOR gate: Extra Layers

We now need to determine what the weights from the NOR node (N1) and AND node (N2) 
to the NOR node (Nz) need to be 



Neural Network as a Logical XOR gate: 3-layer MLP

- Recall: We have determined the weights from 
the input to the now hidden layer to be:

- We wish to determine the weights for the AND 
and NOR nodes to combine to the XOR

- We use the same activation function:



Neural Network as a Logical XOR gate: 3-layer MLP



Classification metrics: How good is my classifier?

- We can use metrics of skill together with a 
loss function for training

Classification Metrics (Categorize data into labels)

● Accuracy: The proportion of total predictions that were 
correct.

● Precision: The proportion of positive identifications that 
were actually correct.

● Recall (Sensitivity): The proportion of actual positives 
that were identified correctly.

● F1 Score: The harmonic mean of precision and recall.
● Confusion Matrix: A table used to describe the 

performance of a classification model, showing the actual 
vs. predicted values.

● ROC-AUC: The area under the receiver operating 
characteristic curve, measuring the trade-off between true 
positive rate and false positive rate.

● Precision-Recall Curve: Focuses on the performance 
with respect to the positive (minority) class.



Terminology for classification metrics

- True Positive (TP): The model predicts a positive class, and the actual 
class is also positive

- False Positive (FP): The model predicts a positive class, but the 
actual class is negative

- False Negatives (FN): The model predicts a negative class, but the 
actual class is positive

- True Negatives (TN): The model predicts a negative class, and the 
actual class is also negative

TN (True Negative)



Metrics

- Accuracy (ACC): Ratio of true predictions (TP+TN) to total predictions 

- Recall (R): aka ‘sensitivity’ and True Positive Rate (TPR) is the fraction of 
relevant instances retrieved

- Specificity: or False Positive Rate (FPR) 

- True Negative Rate (TNR): 

- Precision (P): or Positive Predictive Value (PPV), the fraction of retrieved 
instances that are relevant

- F1 score: harmonic mean of precision and recall
TN (True Negative)

ACC



The ‘confusion’ matrix

Contingency Table -> Confusion Matrix

Count the number of actual positives and negatives (from labels) vs the 
predicted positives and negatives Karl Pearson

(1800s UK) 
established 

mathematical 
statistics



Confusion Matrix Terminology: TP
- The model predicts a positive class, and the actual class is also positive

- Here, we use an example of if a trojan is present (dog as reference)

TN (True Negative)
NB: Trojan here is ‘dog’



Confusion Matrix Terminology: FP
- The model predicts a positive class, but the actual class is negative

TN (True Negative)
NB: Trojan here is ‘dog’



Confusion Matrix Terminology: FN
- The model predicts a negative class, and the actual class is positive

TN (True Negative)
NB: Trojan here is ‘dog’



Confusion Matrix Terminology: TN
- The model predicts a negative class, and the actual class is also negative

TN (True Negative)
NB: Trojan here is ‘dog’



More that two labels?

Many datasets have multiple tables, e.g. not just ‘dog’ and ‘not dog’

For malware, we can have trojan A, B and C, giving us a 3 class confusion matrix



Comparing two models with their confusion matrices 



Comparing models with their confusion matrices: ACC



Comparing models with their confusion matrices: Recall

Note: The True Positive Rate 
(TPR) is the recall (R)



Comparing models with their confusion matrices: True Negative Rate (TPR) 



Comparing models with their confusion matrices: Recall
- TPR and TNR expressed as probabilities



TPR/Recall (R) for several classes: Class i



TPNR/Specificity for several classes: Class i



Precision (P) or Positive Predictive Value (PPV)



Precision (P) or Positive Predictive Value (PPV): Class i



Precision is best if penalty for incorrect prediction is high



F1 score is preferable if we have imbalance datasets

 Precision and Recall are not adequate for showing the performance of detection

 Unlike Accuracy, the F-score is resilient to imbalanced datasets

 F-score is more comprehensive than Accuracy



Receiving Operating Characteristics (ROC) Curve

- An ROC curve plots TPR vs. FPR at different 
classification thresholds

- If we move the decision boundary in our model 
the TPR and FPR

- Lowering the classification threshold will classify 
more items as positive, thus increasing both 
False Positives and True Positives

- To compute the points in an ROC curve, we 
could e.g. evaluate a logistic regression model 
many times with different classification thresholds

developers.google.com



AUC: Area Under the ROC Curve

- The AUC measures the entire two-dimensional area 
underneath the entire ROC curve (think integral 
calculus) from (0,0) to (1,1)

- AUC provides an aggregate measure of performance 
across possible the classification thresholds 

- One can interpret the AUC as the probability that the 
model ranks a random positive example more highly 
than a random negative example 

developers.google.com



AUC considerations

AUC is desirable for the following two reasons:

● AUC is scale-invariant. It measures how well predictions are ranked, rather than their absolute values.
● AUC is classification-threshold-invariant. It measures the quality of the model's predictions irrespective of what classification 

threshold is chosen.

However, both these reasons come with caveats, which may limit the usefulness of AUC in certain use cases:

● Scale invariance is not always desirable. For example, sometimes we really do need well calibrated probability outputs, and 
AUC won’t tell us about that.

● Classification-threshold invariance is not always desirable. In cases where there are wide disparities in the cost of false 
negatives vs. false positives, it may be critical to minimize one type of classification error. For example, when doing email spam 
detection, you likely want to prioritize minimizing false positives (even if that results in a significant increase of false negatives). 
AUC isn't a useful metric for this type of optimization.

developers.google.com


