

ECS171: Machine Learning

Instructor: Prof. Maike Sonnewald
TAs: Pu Sun & Devashree Kataria

MOCO Amsterdam garden

L7 Emulating Logical
Gates with NNs and
performance metrics for
categorical models

Intended learning outcomes

- Appreciate the concept of Boolean functions and how they relate to neural networks including
perceptrons and multilayer perceptrons

- Apply and explain the reasoning behind the AND and NOR gate, as well as XOR
- Know the various metrics used for determining classification skill and how various

combinations are beneficial for different use cases
- Be able to apply the calculations

Recall: Feed-Forward pass in a neural network

- Process input data through the network to receive output
- The data flows only ‘forwards’ from the input layer
- In a ‘fully-connected’ network, such as a normal Multilayer

Perceptron, every node in one layer is connected to every node in
the next layer with an assigned weight

- In each node, we take the Linear Combination of Inputs (aka
weighted sum):

- The Linear Combination of Inputs z is passed through an ‘activation
function’ to give the output from the given node

- This process is done for each node in a layer, and passed to the next
layer

Inside one node ‘N’:
each has the Linear
Combination of
Inputs (left) and
activation (right)

N

NN

N
N

N

Hike or no hike?

Input: Temperature (oC)

Output: Chance of hike

We can model the curve with a NN

Are we going for a hike?

Are we going for a hike? ‘Softplus’ activation function

- Example using the ‘Softplus’
- The Softplus activation function is a smooth and

continuously differentiable:

g(x) = log(1-ez)

- Maps negative values to zero and keeps positive
values unchanged

- Being continuously differentiable can be beneficial for
training

- Note: Softplus function tends to saturate for large
positive input values which can lead to a ‘vanishing
gradient’

pythonplainenglish.io

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

𝚺

𝚺

𝚺

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

𝚺

𝚺

𝚺

Are we going for a hike?

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

𝚺

𝚺

𝚺

𝚺

Are we going for a hike?

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

𝚺

𝚺

𝚺

𝚺

Initiate weights randomly
- w to hidden 1: h1
- w to hidden 2: h2
- w to output: o

Are we going for a hike?

Input Hidden 1 Hidden 2 Output

𝚺

𝚺

𝚺

𝚺

𝚺

𝚺 - Output is a probability
- For 1 Feed-Forward

pass repeat for all data
points

Boolean/logical venn diagrams

peakd.com

George Boole
(1800s UK)

Logical gates are also boolean functions

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Logical gates are also boolean functions

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron Perceptron

Multilayer Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Logical gate for the AND

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as logical ‘AND’ gate

- A Perceptron is sufficient
- Goal: Find values for the weights such that the network acts like the AND

gate as given by the ‘truth table’

Neural Network as logical ‘AND’ gate

- A Perceptron is sufficient
- Goal: Find values for the weights such that the network acts like the AND

gate as given by the ‘truth table’
Truth table

- A Perceptron is sufficient
- Goal: Find values for the weights such that the network acts like the AND

gate as given by the ‘truth table’
- Visually interpreted, the decision boundary from the truth table can be

seen as a straight line

- NOTE: There is a linear decision boundary, thus the problem is linearly
separable

Neural Network as logical ‘AND’ gate

Truth table

Neural Network as logical ‘AND’ gate

- To demonstrate, take a set of weights, w:

- Set up the four ‘cases’ in the truth table (recall the g(z)):

- The equation for the line separating the points is:

- You can take any values of the weights as long as the inequality is
preserved

Truth table

Python implementation of AND gate

Logical gate for the NOR

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as logical ‘NOR’ gate

- The implementation of the NOR gate is similar to the AND gate
- The truth table is now:

- Which we can graphically represent as:

Neural Network as logical ‘NOR’ gate

- Take the weights:

- The four cases are now:

- The equation for the line separating the points is:

- You can take any values of the weights as long as the inequality is preserved

Logical gate for the XOR

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Perceptron

https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as logical ‘XOR’ gate

- The implementation of the XOR gate is different from the AND and NOR
- The truth table is now:

- The graphical representation is:

- There is no straight line determine to separate the points

Neural Network as logical ‘XOR’ gate: Problem!

- Work with weights:

- Set up the cases:

- Separability problem: We have no straight line separating the two…

Possible Solutions for Separability Problem

- We need to add the capacity to allow non-linear decision boundaries

1. Add a non-linear feature
a. This is referred to as the ‘kernel trick’ (Covered with SVM)

2. Add extra layers to allow non-linearity
a. Here we use a multilayer perceptron

The XOR gate is a combination of NOR and AND

XOR(x1,x2) can be thought of as NOR(NOR(x1,x2),AND(x1,x2))

Neural Network as a Logical XOR gate: Extra Layers

We now need to determine what the weights from the NOR node (N1) and AND node (N2)
to the NOR node (Nz) need to be

Neural Network as a Logical XOR gate: Extra Layers

We now need to determine what the weights from the NOR node (N1) and AND node (N2)
to the NOR node (Nz) need to be

Neural Network as a Logical XOR gate: 3-layer MLP

- Recall: We have determined the weights from
the input to the now hidden layer to be:

- We wish to determine the weights for the AND
and NOR nodes to combine to the XOR

- We use the same activation function:

Neural Network as a Logical XOR gate: 3-layer MLP

Classification metrics: How good is my classifier?

- We can use metrics of skill together with a
loss function for training

Classification Metrics (Categorize data into labels)

● Accuracy: The proportion of total predictions that were
correct.

● Precision: The proportion of positive identifications that
were actually correct.

● Recall (Sensitivity): The proportion of actual positives
that were identified correctly.

● F1 Score: The harmonic mean of precision and recall.
● Confusion Matrix: A table used to describe the

performance of a classification model, showing the actual
vs. predicted values.

● ROC-AUC: The area under the receiver operating
characteristic curve, measuring the trade-off between true
positive rate and false positive rate.

● Precision-Recall Curve: Focuses on the performance
with respect to the positive (minority) class.

Terminology for classification metrics

- True Positive (TP): The model predicts a positive class, and the actual
class is also positive

- False Positive (FP): The model predicts a positive class, but the
actual class is negative

- False Negatives (FN): The model predicts a negative class, but the
actual class is positive

- True Negatives (TN): The model predicts a negative class, and the
actual class is also negative

TN (True Negative)

Metrics

- Accuracy (ACC): Ratio of true predictions (TP+TN) to total predictions

- Recall (R): aka ‘sensitivity’ and True Positive Rate (TPR) is the fraction of
relevant instances retrieved

- Specificity: or False Positive Rate (FPR)

- True Negative Rate (TNR):

- Precision (P): or Positive Predictive Value (PPV), the fraction of retrieved
instances that are relevant

- F1 score: harmonic mean of precision and recall
TN (True Negative)

ACC

The ‘confusion’ matrix

Contingency Table -> Confusion Matrix

Count the number of actual positives and negatives (from labels) vs the
predicted positives and negatives Karl Pearson

(1800s UK)
established

mathematical
statistics

Confusion Matrix Terminology: TP
- The model predicts a positive class, and the actual class is also positive

- Here, we use an example of if a trojan is present (dog as reference)

TN (True Negative)
NB: Trojan here is ‘dog’

Confusion Matrix Terminology: FP
- The model predicts a positive class, but the actual class is negative

TN (True Negative)
NB: Trojan here is ‘dog’

Confusion Matrix Terminology: FN
- The model predicts a negative class, and the actual class is positive

TN (True Negative)
NB: Trojan here is ‘dog’

Confusion Matrix Terminology: TN
- The model predicts a negative class, and the actual class is also negative

TN (True Negative)
NB: Trojan here is ‘dog’

More that two labels?

Many datasets have multiple tables, e.g. not just ‘dog’ and ‘not dog’

For malware, we can have trojan A, B and C, giving us a 3 class confusion matrix

Comparing two models with their confusion matrices

Comparing models with their confusion matrices: ACC

Comparing models with their confusion matrices: Recall

Note: The True Positive Rate
(TPR) is the recall (R)

Comparing models with their confusion matrices: True Negative Rate (TPR)

Comparing models with their confusion matrices: Recall
- TPR and TNR expressed as probabilities

TPR/Recall (R) for several classes: Class i

TPNR/Specificity for several classes: Class i

Precision (P) or Positive Predictive Value (PPV)

Precision (P) or Positive Predictive Value (PPV): Class i

Precision is best if penalty for incorrect prediction is high

F1 score is preferable if we have imbalance datasets

 Precision and Recall are not adequate for showing the performance of detection

 Unlike Accuracy, the F-score is resilient to imbalanced datasets

 F-score is more comprehensive than Accuracy

Receiving Operating Characteristics (ROC) Curve

- An ROC curve plots TPR vs. FPR at different
classification thresholds

- If we move the decision boundary in our model
the TPR and FPR

- Lowering the classification threshold will classify
more items as positive, thus increasing both
False Positives and True Positives

- To compute the points in an ROC curve, we
could e.g. evaluate a logistic regression model
many times with different classification thresholds

developers.google.com

AUC: Area Under the ROC Curve

- The AUC measures the entire two-dimensional area
underneath the entire ROC curve (think integral
calculus) from (0,0) to (1,1)

- AUC provides an aggregate measure of performance
across possible the classification thresholds

- One can interpret the AUC as the probability that the
model ranks a random positive example more highly
than a random negative example

developers.google.com

AUC considerations

AUC is desirable for the following two reasons:

● AUC is scale-invariant. It measures how well predictions are ranked, rather than their absolute values.
● AUC is classification-threshold-invariant. It measures the quality of the model's predictions irrespective of what classification

threshold is chosen.

However, both these reasons come with caveats, which may limit the usefulness of AUC in certain use cases:

● Scale invariance is not always desirable. For example, sometimes we really do need well calibrated probability outputs, and
AUC won’t tell us about that.

● Classification-threshold invariance is not always desirable. In cases where there are wide disparities in the cost of false
negatives vs. false positives, it may be critical to minimize one type of classification error. For example, when doing email spam
detection, you likely want to prioritize minimizing false positives (even if that results in a significant increase of false negatives).
AUC isn't a useful metric for this type of optimization.

developers.google.com

