

dailytarhel.com

ECS171: Machine Learning

L8 NN Backpropagation

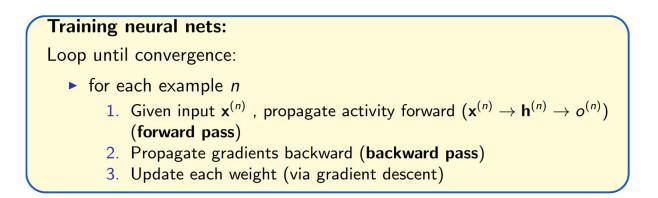
Instructor: Prof. Maike Sonnewald TAs: Pu Sun & Devashree Kataria

Intended learning outcomes

- Explain what happens when weights are adjusted and how the different magnitudes impact the training efficiency and gradient descent
- Work through how we compute the output layer error with the gradient of the Loss Function
- Appreciate reasoning and how to apply termination criteria
- Describe the vanishing gradient problem

Training Neural Networks: Back-propagation

- The core algorithm for how neural networks learn
- Algorithm for how a single training example would like to nudge the weights and biases



X is input, h is hidden layer and o is output

The benefit of backpropagation

Definition:

- An algorithm used for **efficiently** computing the gradients of the cost function with respect to each parameter
- It applies the chain rule (calculus) in a structured way moving backwards through the network
- Algorithm shows how a single training example would like to nudge the weights and biases

Purpose:

- Compute gradients in a computationally efficient manner.
- Without backpropagation, calculating the gradients, especially in large networks, would be extremely computationally expensive.

Hebbian learning in ML

- Hebbian theory is a <u>neuropsychological</u> theory claiming that an increase in <u>synaptic</u> efficacy arises from a <u>presynaptic cell</u>'s repeated and persistent stimulation of a postsynaptic cell (wikipedia)
- "Neurons that fire together wire together"
 - Strengthening of connections happens between neurons that are the most active and connected
- Neural network with at least one hidden layer is a universal approximator (can represent any function)
 - Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, <u>paper</u>
- The capacity of the network increases with more hidden units and more hidden layers

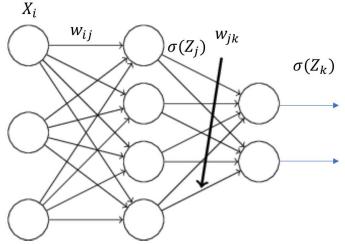
Donald Hebb (1904-1985) Can.

Key Idea behind Backpropagation

- We don't have targets for a hidden unit, but we can compute how fast the error changes as we change its activity
- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden activities
- Each hidden activity can affect many output units and can therefore have many separate effects on the error
 - These effects must be combined
- We can compute error derivatives for all the hidden units efficiently
- Once we have the error derivatives for the hidden activities, it's easy to get the error derivatives for the weights going into a hidden unit: This is just the chain rule!

Neural Network

Sigmoid (x) : $\sigma(x) = 1 / (1 + e^{-x})$



i: related to input layer *j*: related to hidden layer *k*: related to output layer *K*: number of neurons in the output layer

 b_j : biases in the hidden layer. b_k : biases in the output layer.

 X_i : input information in the input layer. W_{ij} : weights connecting input to hidden layer. W_{jk} : weights connecting hidden layer to output layer.

$$Z_{j} = W_{ij}X_{i} + b_{j} = \sum_{i} w_{ij}x_{i} + b_{j}$$
$$Z_{k} = W_{jk} \sigma(Z_{j}) + b_{k}$$
$$\hat{y}_{k} = \sigma(Z_{k})$$
predicted output: $\hat{y}_{k} = \sigma(W_{jk} \sigma(W_{ij}X_{i} + b_{j}) + b_{k})$

actual output : y

Neural network error function E(w)

N= number of samples

$$E(w) = \sum_{n=1}^{N} E_n(w)$$

E_n: Error evaluation for the *n*th observation

 b_j : biases in the hidden layer. b_k : biases in the output layer.

 X_i : data coming from the input layer. W_{ij} : weights connecting input to hidden layer. W_{ik} : weights connecting hidden layer to output layer.

$$E_n = \frac{1}{2} \sum_k (\hat{y}_{nk} - y_n)^2$$

k: number of output nodes

Sum of Squared Errors for all dataset observations

 $E(w) = \sum_{records \ output \ nodes} (predicted \ - \ actual \)^2$

 $Z_{j} = W_{ij}X_{i} + b_{j} = \sum_{i} w_{ij}x_{i} + b_{j}$ $X_{j} = \sigma(W_{ij}X_{i} + b_{j}) : \text{data coming from the hidden layer}$ $Z_{k} = W_{jk} \sigma Z_{j} + b_{k}$ $\hat{y}_{k} = \sigma(Z_{k})$ $\hat{y}_{k} = \sigma(W_{jk} \sigma(W_{ij}X_{i} + b_{j}) + b_{k})$

Compute the output layer error with the gradient of the Loss Function

The output layer error:

$$\frac{\partial E_n(w)}{\partial W_{jk}} = \frac{\partial \left(\frac{1}{2}\sum_k (\hat{y}_{nk} - y_n)^2\right)}{\partial W_{jk}}$$

$$= (\hat{y}_{nk} - y_{nk}) \frac{\partial (\hat{y}_{nk} - y_n)}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \frac{\partial (\hat{y}_{nk})}{\partial W_{jk}}$$

 $\begin{array}{l} b_j: \mbox{hidden layer biases} \\ b_k: \mbox{output layer biases} \\ X_i: \mbox{data in the input layer.} \\ W_{ij}: \mbox{hidden layer weights.} \\ W_{jk}: \mbox{output layer weights.} \end{array}$

We know that the predicted outcome for data point n in out output layer k is:

$$\hat{y}_{nk} = \sigma(W_{jk} \sigma(W_{ij}X_i + b_j) + b_k) \text{ or } \hat{y}_{nk} = \sigma(Z_k)$$

We write $X_j = \sigma(W_{ij}X_i + b_j)$ and for convenience: $X_j = \sigma(Z_j)$

Using the chain rule:
$$\frac{\partial E_n(w)}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \frac{\partial (\hat{y}_{nk})}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \frac{\partial (\hat{y}_{nk})}{\partial Z_k} \frac{\partial Z_k}{\partial W_{jk}}$$

Next ->

Compute the output layer error with the gradient of the Loss Function

We have:

Thus:

$$\frac{\partial E_n(w)}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \frac{\partial (\hat{y}_{nk})}{\partial Z_k} \frac{\partial Z_k}{\partial W_{jk}}$$

b_j : hidden layer biases b_k : output layer biases
X_i : data in the input layer. W_{ij} : hidden layer weights. W_{jk} : output layer weights.

The derivative of sigmoid function
$$\sigma(x) : \frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

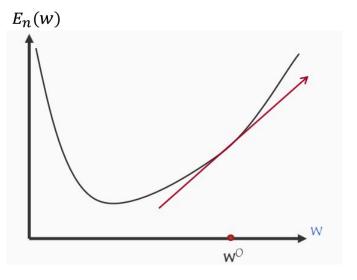
Where Sigmoid(x): $\sigma(x) = 1/(1 + e^{-x})$

$$\frac{\partial E_n(w)}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \,\sigma(Z_k) \big(1 - \sigma(Z_k)\big) X_j$$

Backpropagation: Output to hidden layer

Using the gradient descent update rule: $\mathbf{w}_{new} \leftarrow \mathbf{w}_{current} + \Delta \mathbf{w}$

The
$$\Delta \mathbf{w}$$
 is now given by: $\frac{\partial E_n(w)}{\partial W_{jk}} = (\hat{y}_{nk} - y_n) \sigma(Z_k) (1 - \sigma(Z_k)) X_j$

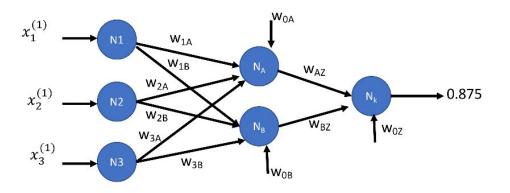


As such, varying the $\mathbf{w}_{\text{current}}$ value gets closer to the optimal weight

Useful derivatives for different activation functions

name	function	derivative
Sigmoid	$\sigma(z) = rac{1}{1 + \exp(-z)}$	$\sigma(z) \cdot (1 - \sigma(z))$
Tanh	$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$	$1/\cosh^2(z)$
ReLU	$\operatorname{ReLU}(z) = \max(0, z)$	$egin{cases} 1, & ext{if } z > 0 \ 0, & ext{if } z \leq 0 \end{cases}$

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass

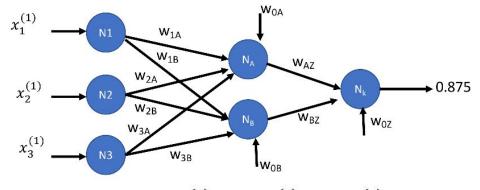


learning rate ; $0 \leq \eta \leq 1$	
Assume : $\eta = 0.1$	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0.4		NA	=0.7892
	x ₂ =N ₂ =0.2		N _B :	=0.8176
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w	_{0A} =0.5	w _{ob} =C).7	w _{0Z} =0.5
w	_{1A} = 0.6	w _{1B} = 0.9		w _{AZ} =0.9
w	_{2A} =0.8	w _{2B} =0.8		w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0	.4	

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



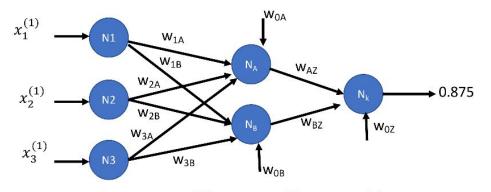
$$Z_j = Z_{N_A} = \omega_{0A} + \omega_{1A} x_1^{(1)} + \omega_{2A} x_2^{(1)} + \omega_{3A} x_3^{(1)} = 1.32$$

learning rate ; $0 \leq \eta \leq 1$	
Assume : $\eta = 0.1$	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0.4		N _A	=0.7892
	x ₂ =N ₂ =0.2		NB	=0.8176
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w _{0A} =0.5		w _{ob} =0).7	w _{oz} =0.5
w _{1A} = 0.6		w _{1B} = 0.9		w _{AZ} =0.9
w	_{2A} =0.8	w _{2B} =0.8		w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0	.4	

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



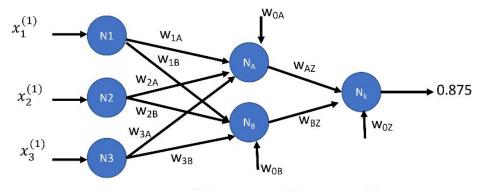
$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

learning rate ; $0 \leq \eta \leq 1$
Assume : $\eta = 0.1$

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0.4		N _A	=0.7892
	x ₂ =N ₂ =0.2		N _B =0.8176	
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w _{0A} =0.5		w _{ob} =C).7	w _{oz} =0.5
w _{1A} = 0.6		w _{1B} = 0.9		w _{AZ} =0.9
w _{2A} =0.8		w _{2B} =0.8		w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0	.4	

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



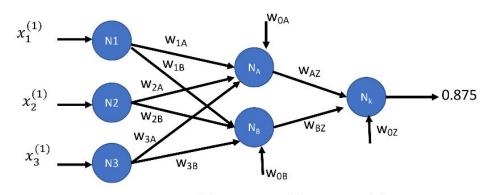
$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$
$$Z_{k}$$

learning rate ; 0	$\leq \eta \leq 1$
Assume : $\eta = 0.1$	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0.4		N _A	=0.7892
	x ₂ =N ₂ =0.2		N _B =0.8176	
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w _{0A} =0.5		w _{0B} =0).7	w _{oz} =0.5
w _{1A} = 0.6		w _{1B} = 0.9		w _{AZ} =0.9
w _{2A} =0.8		w _{2B} =0.8		w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0.4		

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

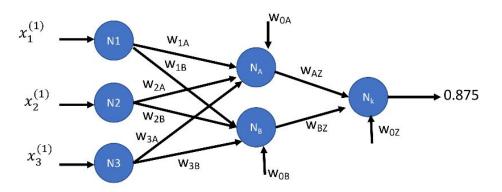
$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

$Assume \cdot n = 0.1$	learning rate ; 0	$\leq \eta \leq 1$
H_{33} u_{11} $e \cdot \eta = 0.1$	Assume : $\eta = 0.1$	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0.4		NA	=0.7892
	x ₂ =N ₂ =0.2		N _B =0.8176	
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w _{0A} =0.5		w _{ob} =C).7	w _{oz} =0.5
w _{1A} = 0.6		w _{1B} = 0.9		w _{AZ} =0.9
w _{2A} =0.8		w _{2B} =0.8		w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0	.4	

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Accuma : n = 0.1	learning rate ; 0 \leq	$\eta \leq 1$
Assume $\cdot \eta = 0.1$	Assume : $\eta = 0.1$	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

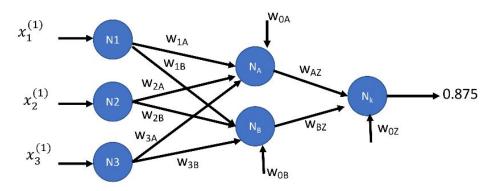
	x ₁ =N ₁ =0.4		N _A :	=0.7892
	x ₂ =N ₂ =0.2		N _B :	=0.8176
	x ₃ =N ₃ =0.7		N _z =	=0.875
w	_{0A} =0.5	w _{ob} =C).7	w _{oz} =0.5
w	_{1A} = 0.6	w _{1B} = 0	0.9	w _{AZ} =0.9
w	_{2A} =0.8	w _{2B} =0	.8	w _{BZ} =0.9
w	_{3A} =0.6	w _{3B} =0	.4	

Assume actual y= $0.8 \rightarrow$ residual error = 0.875 - 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \,\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_j)$ = residual error * $\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_A})$

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

learning rate ; $0 \leq \eta \leq 1$	
Assume : $\eta = 0.1$	
115541110 1 1 012	

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

	x ₁ =N ₁ =0	.4	N _A	=0.7892
	x ₂ =N ₂ =0.2		N _B :	=0.8176
	x ₃ =N ₃ =0	.7	N _z =	=0.875
w	_{0A} =0.5	w _{ob} =C).7	w _{oz} =0.5
W ₁	_{LA} = 0.6	w _{1B} = 0	0.9	w _{AZ} =0.9
W ₂	_{2A} =0.8	w _{2B} =0	.8	w _{BZ} =0.9
W ₃	_{3A} =0.6	w _{3B} =0	.4	

Assume actual y= $0.8 \rightarrow$ residual error = 0.875 - 0.8 = 0.075

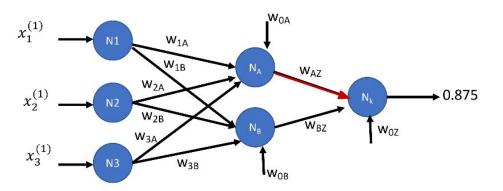
$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \,\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_j)$ = residual error * $\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_A})$

$$w_{AZ-new} = w_{AZ} + \eta \Delta w_{current}$$

= 0.9 + (0.1 x 0.0067) = 0.90067

- Feed forward neural network learning in two phases:
 - a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

 $\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}}, \ \mathsf{N}_{\mathsf{B}} \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}} \end{array}$

 $x_1 = N_1 = 0.4$ $N_A = 0.7892$ $x_2 = N_2 = 0.2$ $N_B = 0.8176$ $x_3 = N_3 = 0.7$ $N_z = 0.875$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= $0.8 \rightarrow$ residual error = 0.875 - 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \,\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_j)$ = residual error * $\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_A})$

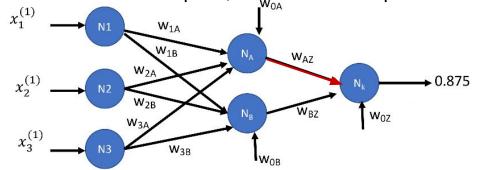
$$w_{AZ-new} = w_{AZ} + \eta \Delta w_{current}$$

= 0.9 + (0.1 x 0.0067) = 0.90067

Backward pass: Updating W_{BZ}

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



learning rate ; $0 \leq \eta \leq 1$	X_i :N ₁ , N ₂ , N ₃
Assume : $\eta = 0.1$	$\sigma(Z_j)$: N _A , N _B
	$\sigma(Z_k): N_z$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{0Z} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

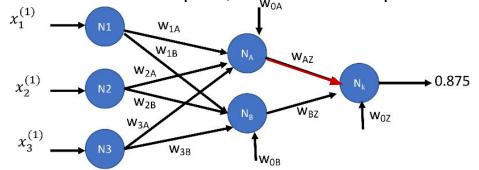
Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

Backward pass: Updating W_{BZ}

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



learning rate ; $0 \leq \eta \leq 1$	$X_i:N_1, N_2, N_3$
Assume : $\eta = 0.1$	$\sigma(Z_j)$: N _A , N _B
	$\sigma(Z_k)$: N _z

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{0Z} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

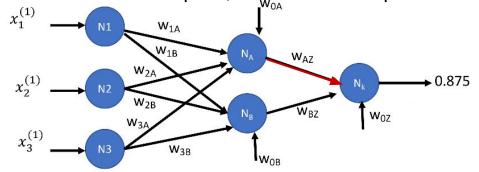
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Feed forward neural network learning in two phases: -

a forward pass, and a backward pass -



$$\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \end{array} \qquad \begin{array}{ll} X_i: \mathsf{N}_1, \ \mathsf{N}_2, \ \mathsf{N}_3 \\ \sigma(Z_j): \ \mathsf{N}_A, \ \mathsf{N}_B \\ \sigma(Z_j): \ \mathsf{N}_A \end{array}$$

 $: N_A, N_B$ $\sigma(Z_k): N_z$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

0.5	0.7	0.5
w _{0A} =0.5	w _{0B} =0.7	w _{0Z} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

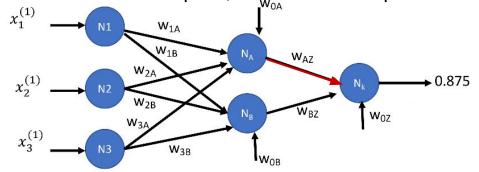
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Feed forward neural network learning in two phases: -

a forward pass, and a backward pass -



. .

2 1

$$\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \end{array} \qquad \begin{array}{ll} X_i: \mathsf{N}_1, \ \mathsf{N}_2, \ \mathsf{N}_3 \\ \sigma(Z_j): \ \mathsf{N}_A, \ \mathsf{N}_B \\ \sigma(Z_j): \ \mathsf{N}_A \end{array}$$

): N_A, N_B $\sigma(Z_k): \mathbb{N}_z$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{0Z} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

$$\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_j)$$

= residual error * $\sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_B})$

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

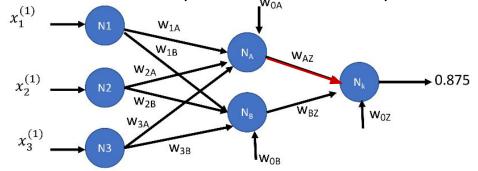
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9462$$

Feed forward neural network learning in two phases: -

a forward pass, and a backward pass



$$\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \end{array} \qquad \begin{array}{ll} X_i: \mathsf{N}_1, \ \mathsf{N}_2, \ \mathsf{N}_3 \\ \sigma(Z_j): \ \mathsf{N}_A, \ \mathsf{N}_B \\ \sigma(Z_j): \ \mathsf{N}_A \end{array}$$

 $: N_A, N_B$ $\sigma(Z_k): \mathbb{N}_7$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 \rightarrow residual error = 0.875 - 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_i)$ = residual error $* \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_R})$ $w_{BZ-new} = w_{BZ} + \eta \Delta w_{current}$ $= 0.9 + (0.1 \times 0.0069) = 0.90069$

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

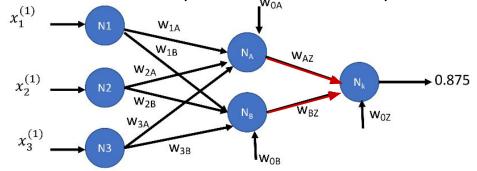
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Feed forward neural network learning in two phases: -

a forward pass, and a backward pass



$$\begin{array}{ll} \text{earning rate ; } 0 \leq \eta \leq 1 & X_i: N_1, N_2, N_3 \\ \text{Assume : } \eta = 0.1 & \sigma(Z_j): N_A, N_B \\ \sigma(Z_k): N_z \end{array}$$

N_A =0.7892 $x_1 = N_1 = 0.4$ $x_2 = N_2 = 0.2$ N_B =0.8176 $x_3 = N_3 = 0.7$ $N_z = 0.875$

 N_A, N_B

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 \rightarrow residual error = 0.875 - 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_i)$ = residual error $* \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_{N_R})$ $w_{BZ-new} = w_{BZ} + \eta \Delta w_{current}$ $= 0.9 + (0.1 \times 0.0069) = 0.90069$

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

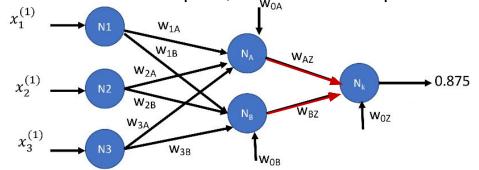
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



learning rate ; $0 \leq \eta \leq 1$	<i>X_i</i> :N ₁ , N ₂ , N ₃
Assume : $\eta = 0.1$	$\sigma(Z_j)$: N _A , N _B
	$\sigma(Z_k)$: N _z

 $x_1 = N_1 = 0.4$ $N_A = 0.7892$ $x_2 = N_2 = 0.2$ $N_B = 0.8176$ $x_3 = N_3 = 0.7$ $N_z = 0.875$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

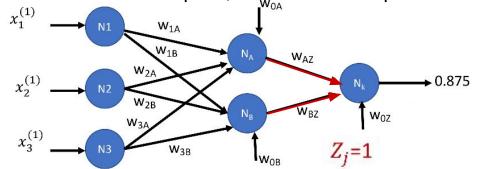
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



learning rate ; $0 \leq \eta \leq 1$	<i>X_i</i> :N ₁ , N ₂ , N ₃
Assume : $\eta = 0.1$	$\sigma(Z_j)$: N _A , N _B
	$\sigma(Z_k)$: N _z

 $x_1 = N_1 = 0.4$ $N_A = 0.7892$ $x_2 = N_2 = 0.2$ $N_B = 0.8176$ $x_3 = N_3 = 0.7$ $N_z = 0.875$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A} x_{1}^{(1)} + \omega_{2A} x_{2}^{(1)} + \omega_{3A} x_{3}^{(1)} = 1.32$$

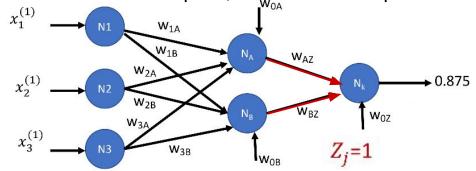
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B} x_{1}^{(1)} + \omega_{2B} x_{2}^{(1)} + \omega_{3B} x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ} \sigma(1.32) + \omega_{BZ} \sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Feed forward neural network learning in two phases: -

a forward pass, and a backward pass -



$$\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \end{array} \qquad \begin{array}{ll} X_i: \mathsf{N}_1, \ \mathsf{N}_2, \ \mathsf{N}_3 \\ \sigma(Z_j): \ \mathsf{N}_A, \ \mathsf{N}_B \\ \sigma(Z_j): \ \mathsf{N}_A \end{array}$$

 $: N_A, N_B$ $\sigma(Z_k): N_z$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 \rightarrow residual error = 0.875 - 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) (1 - \sigma(Z_k)) \sigma(Z_j)$

= 0.075 * 0.87 * 0.13 * 1 = 0.008

$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

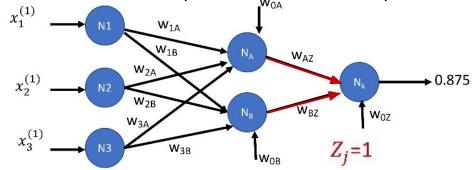
$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9462$$

 $\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}}, \ \mathsf{N}_{\mathsf{B}} \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}} \end{array}$

 $x_1 = N_1 = 0.4$ $N_A = 0.7892$ $x_2 = N_2 = 0.2$ $N_B = 0.8176$ $x_3 = N_3 = 0.7$ $N_z = 0.875$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 \rightarrow residual error = 0.875 – 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

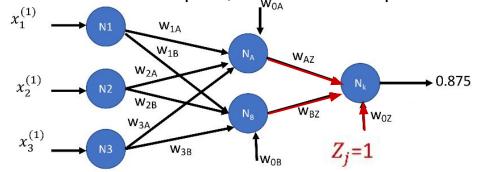
 $\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) \big(1 - \sigma(Z_k) \big) \sigma(Z_j)$

= 0.075 * 0.87 * 0.13 * 1 = 0.008

 $w_{0Z-new} = w_{0Z} + \eta \Delta w_{current}$ = 0.9 + (0.1 x 0.0069) = 0.90069

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



$$Z_{j} = Z_{N_{A}} = \omega_{0A} + \omega_{1A}x_{1}^{(1)} + \omega_{2A}x_{2}^{(1)} + \omega_{3A}x_{3}^{(1)} = 1.32$$

$$Z_{N_{B}} = \omega_{0B} + \omega_{1B}x_{1}^{(1)} + \omega_{2B}x_{2}^{(1)} + \omega_{3B}x_{3}^{(1)} = 1.5$$

$$Z_{k} = \omega_{0Z} + \omega_{AZ}\sigma(1.32) + \omega_{BZ}\sigma(1.5)$$

$$= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9462$$

learning rate ; $0 \le \eta \le 1$ X_i :Assume : $\eta = 0.1$ $\sigma(X_i)$ $\sigma(X_i)$

 $X_i: N_1, N_2, N_3$ $\sigma(Z_j): N_A, N_B$ $\sigma(Z_k): N_z$

x ₁ =N ₁ =0.4	N _A =0.7892
x ₂ =N ₂ =0.2	N _B =0.8176
x ₃ =N ₃ =0.7	N _z =0.875

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5008
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

$$w_{new} = w_{current} + \eta \Delta w_{current}$$

 $\Delta w_{current} = (\hat{y}_k - y) \, \sigma(Z_k) \big(1 - \sigma(Z_k) \big) \sigma(Z_j)$

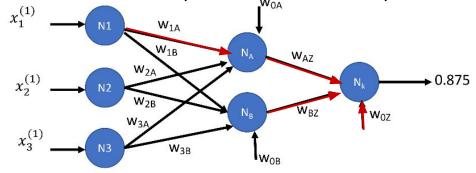
= 0.075 * 0.87 * 0.13 * 1 = 0.008

$$w_{0Z-new} = w_{0Z} + \eta \Delta w_{current}$$

= 0.5 + (0.1 x 0.008) = 0.5008

- Feed forward neural network learning in two phases:

- a forward pass, and a backward pass



 $\begin{array}{ll} learning \ rate \ ; 0 \ \leq \eta \leq 1 \\ Assume \ : \ \eta = 0.1 \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}}, \ \mathsf{N}_{\mathsf{B}} \\ \sigma(Z_k) : \ \mathsf{N}_{\mathsf{A}} \end{array}$

 $x_1 = N_1 = 0.4$ $N_A = 0.7892$ $x_2 = N_2 = 0.2$ $N_B = 0.8176$ $x_3 = N_3 = 0.7$ $N_z = 0.875$

w _{0A} =0.5	w _{0B} =0.7	w _{oz} =0.5008
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.90067
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.90069
w _{3A} =0.6	w _{3B} =0.4	

Assume actual y= 0.8 → residual error = 0.875 – 0.8 = 0.075

 $Z_{N_A} = \omega_{0A} + \omega_{1A} x_1^{(1)} + \omega_{2A} x_2^{(1)} + \omega_{3A} x_3^{(1)} = 1.32$

 Δw_{hidden}

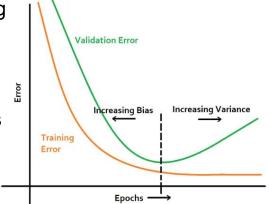
= residual error * error of the hidden layer * weighted error of the output layer

$$\Delta w_{hidden} = (\hat{y} - y) * \frac{\partial \sigma(Z_j)}{\partial W_{ij}} * W_{jk} \frac{\partial \sigma(Z_k)}{\partial W_{jk}}$$

Termination Criteria: When to stop training

- Criteria for terminating the training process can be dictate by:
 - Time: Risk degradation in model performance
 - Threshold of prediction error/minimum accuracy with training data: Risk overfitting
- Cross-validation procedure to determine when to stop training
 - Save a portion of the data not used for training and testing
 - For example: with k-fold cross-validation, the training data is divided into k subsets (or "folds")
 - The model is trained on k-1 folds and validated on the remaining fold. This process is repeated k times, each time with a different fold used for validation. The model's performance is then averaged over these k iterations.

Regardless of the termination criteria used, the NN is not guaranteed to arrive at the global minimum for the SSE as it may become stuck in a local minimum which still represents a good , if not optimal solution Epoch: number of times the learning algorithm works through the training data Batch: Epochs have one or more batches

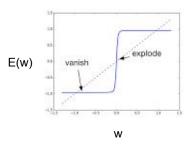


Wrapping up

- Once all the weights are updated, we complete one round of backpropagation
 - One forward pass followed by a backward pass are counted as one full pass
- With the updated weights, we then obtain the predicted output for the next data point, in another forward pass and compute the prediction error
- We repeat this until termination/stop criteria is reached which is termed that the model has converged

Vanishing Gradient Problem

- Vanishing Gradient Problem can occur during the training of NN when the gradient of the loss function wrt the weights in the lower layers of the network become very small
- Small gradient do not contribute much to the weight updates during training. As a result, it can slow or even halt learning those layers as the weights are not being updated effectively
- The problem is a result of the multiplicative effect of small derivatives of activation functions in deep networks



Examples of Activation Functions and Their Impact

- **Sigmoid Function**: It squashes its input to a range between 0 and 1. Its derivative is maximal at 0.25 and decreases toward 0 as the input moves away from 0. In deep networks, multiplying these small values can quickly lead to vanishing gradients.
- Tanh Function: Similar to sigmoid, but squashes input to a range between
 1 and 1. It suffers from the same problem as sigmoid for high absolute values of input.
- ReLU (Rectified Linear Unit): Introduced as a solution to the vanishing gradient problem. It does not saturate in the positive input range and has a derivative of either 0 (for negative inputs) or 1 (for positive inputs). However, ReLU can lead to another issue called the "dying ReLU problem," where neurons only output negative values and thus have a derivative of zero, effectively "dying."

