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L8  NN Backpropagation



Intended learning outcomes

- Explain what happens when weights are adjusted and how the different magnitudes impact 
the training efficiency and gradient descent

- Work through how we compute the output layer error with the gradient of the Loss Function
- Appreciate reasoning and how to apply termination criteria
- Describe the vanishing gradient problem 



Training Neural Networks: Back-propagation

- The core algorithm for how neural networks learn
- Algorithm for how a single training example would like to nudge the weights and biases

X is input, h is hidden layer and o is output



The benefit of backpropagation
Definition: 

- An algorithm used for efficiently computing the gradients of the cost function with respect to 
each parameter 

- It applies the chain rule (calculus) in a structured way moving backwards through the network
- Algorithm shows how a single training example would like to nudge the weights and biases

Purpose: 

- Compute gradients in a computationally efficient manner. 
- Without backpropagation, calculating the gradients, especially in large networks, would be 

extremely computationally expensive.



Hebbian learning in ML 

- Hebbian theory is a neuropsychological theory claiming that an increase in 
synaptic efficacy arises from a presynaptic cell's repeated and persistent 
stimulation of a postsynaptic cell (wikipedia)

- “Neurons that fire together wire together” 
- Strengthening of connections happens between neurons that are the 

most active and connected
- Neural network with at least one hidden layer is a universal approximator 

(can represent any function)
- Proof in: Approximation by Superpositions of Sigmoidal Function, 

Cybenko, paper
- The capacity of the network increases with more hidden units and more 

hidden layers

Donald Hebb 
(1904-1985) Can.

https://en.wikipedia.org/wiki/Neuropsychological
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Presynaptic_cell
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf


Key Idea behind Backpropagation

- We don’t have targets for a hidden unit, but we can compute how fast the error changes as 
we change its activity

- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden 
activities

- Each hidden activity can affect many output units and can therefore have many separate 
effects on the error

- These effects must be combined

- We can compute error derivatives for all the hidden units efficiently

- Once we have the error derivatives for the hidden activities, it’s easy to get the error 
derivatives for the weights going into a hidden unit: This is just the chain rule!



Neural Network



Neural network error function E(w)



Compute the output layer error with the gradient of the Loss Function

The output layer error: 

We know that the predicted outcome for data point n in out output layer k is:

                                                                                                or 

We write                                   and for convenience:

Using the chain rule:      

Next ->



Compute the output layer error with the gradient of the Loss Function

We have:

The derivative of sigmoid function 

Where Sigmoid(x): 

Thus: 



Backpropagation: Output to hidden layer

Using the gradient descent update rule:

The           is now given by:

As such, varying the wcurrent value 
gets closer to the optimal weight



Useful derivatives for different activation functions
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Backward pass: Updating W1A

- Feed forward neural network learning in two phases: 
- a forward pass, and a backward pass



Termination Criteria: When to stop training
- Criteria for terminating the training process can be dictate by:

- Time: Risk degradation in model performance
- Threshold of prediction error/minimum accuracy with training 

data: Risk overfitting
- Cross-validation procedure to determine when to stop training

- Save a portion of the data not used for training and testing
- For example: with k-fold cross-validation, the training data is 

divided into k subsets (or "folds")
- The model is trained on k-1 folds and validated on the 

remaining fold. This process is repeated k times, each time 
with a different fold used for validation. The model's 
performance is then averaged over these k iterations.

Regardless of the termination criteria used, the NN is not guaranteed to 
arrive at the global minimum for the SSE as it may become stuck in a 
local minimum which still represents a good , if not optimal solution

Epoch: number of times the 
learning algorithm works 
through the training data
Batch: Epochs have one or 
more batches

medium.com



Wrapping up

- Once all the weights are updated, we complete one round of backpropagation
- One forward pass followed by a backward pass are counted as one full pass

- With the updated weights, we then obtain the predicted output for the next data point, in 
another forward pass and compute the prediction error

- We repeat this until termination/stop criteria is reached which is termed that the model has 
converged



Vanishing Gradient Problem

- Vanishing Gradient Problem can occur during the 
training of NN when the gradient of the loss function 
wrt the weights in the lower layers of the network 
become very small 

- Small gradient do not contribute much to the weight 
updates during training. As a result, it can slow or even 
halt learning those layers as the weights are not being 
updated effectively

- The problem is a result of the multiplicative effect of 
small derivatives of activation functions in deep 
networks

w

E(w)



Examples of Activation Functions and Their Impact

- Sigmoid Function: It squashes its input to a range between 0 and 1. Its 
derivative is maximal at 0.25 and decreases toward 0 as the input moves 
away from 0. In deep networks, multiplying these small values can quickly 
lead to vanishing gradients.

- Tanh Function: Similar to sigmoid, but squashes input to a range between 
-1 and 1. It suffers from the same problem as sigmoid for high absolute 
values of input.

- ReLU (Rectified Linear Unit): Introduced as a solution to the vanishing 
gradient problem. It does not saturate in the positive input range and has a 
derivative of either 0 (for negative inputs) or 1 (for positive inputs). However, 
ReLU can lead to another issue called the "dying ReLU problem," where 
neurons only output negative values and thus have a derivative of zero, 
effectively "dying."


