How To STAY AWAKE IN CLASS
—— 1uide

* HOT DRINK COFFEE IS GREAT AND ALL, BUT IF YOU’RE REALLY
roti . 0 TIRED THERE'S NO HOPE OF IT KEEPING YOUL uLP.
axie = 4710 Uniess (T’s REALLY SCALDING.

N
)y * HOT DRINK /COLD DRINK
( ra\’incsi G6/\10
ALTERNATE BETWEEN COFFEE/ TEA
AND SOMETHING COLD, LIKE A SLUSHIE.
THE TEMPERATURE DIFFERENCE AND

NAUSEATING TASTE COMBINATION
CONSPIRE TO KEEP YOU CONSCIOULS.

* HAVE NEIGHBOR PUNCH YOW zZ = -
ra\-in3'. 4.5/10 D

THEY'RE GENERALLY TOO NICE To ACTUALLY
DO (T. YOUR BEST BET IS TO TELL THEM
THAT YOU ARE POSSIBLY CONCUSSED AND MIGHT —

NEVER WAKE ULP (F ALLOWED TO SLEEP.

- STAB SELF IN HAND WITH PEN
ra‘\'in31 \.9 /10 Q

TYPICALLY ONLY WAKES YOU UP FOR A SECOND,
ALTHOUGH THIS ONE'S EFFICACY REALLY
DEPENDS ON YOUR wiILLPOWER.

*HOLD FEET OFF THE GROUND —,

Yahm)'- 2/10 YOU ALWAYS PUT YOUR FEET DOWN, AND THEN
THERE'S NO HOPE.

\/ oS —>  ACTUALLY (NCREDIBLY
praccs * EAT EFFECTIVE. JUST BE

r J cotian % J10  SURE NOT To RUN OUT
‘)' OF FOOD OR W&é Y- ,

!

dailytarhel.com « GET ENOUGH SLEEP? THE NIGHT BEFORE ™)

THIS WILL NEVER HAPPEN AS LONG AS

inq. N/A
vating THE INTERNET EXISTS.






Intended learning outcomes

- Explain what happens when weights are adjusted and how the different magnitudes impact

the training efficiency and gradient descent
- Work through how we compute the output layer error with the gradient of the Loss Function
- Appreciate reasoning and how to apply termination criteria
- Describe the vanishing gradient problem



Training Neural Networks: Back-propagation

- The core algorithm for how neural networks learn
- Algorithm for how a single training example would like to nudge the weights and biases

/~ Training neural nets: )

Loop until convergence:

» for each example n
1. Given input x(" | propagate activity forward (x(" — h(" — o(")
(forward pass)
2. Propagate gradients backward (backward pass)
\_ 3. Update each weight (via gradient descent) )

X is input, h is hidden layer and o is output



The benefit of backpropagation

Definition:

- An algorithm used for efficiently computing the gradients of the cost function with respect to
each parameter

- It applies the chain rule (calculus) in a structured way moving backwards through the network

- Algorithm shows how a single training example would like to nudge the weights and biases

Purpose:

- Compute gradients in a computationally efficient manner.
- Without backpropagation, calculating the gradients, especially in large networks, would be
extremely computationally expensive.



Hebbian learning in ML

- Hebbian theory is a neuropsychological theory claiming that an increase in

synaptic efficacy arises from a presynaptic cell's repeated and persistent
stimulation of a postsynaptic cell (wikipedia)

« . . » Donald Hebb
- “Neurons that fire together wire together (1904-1985) Can.

- Strengthening of connections happens between neurons that are the
most active and connected
- Neural network with at least one hidden layer is a universal approximator
(can represent any function)
- Proof in: Approximation by Superpositions of Sigmoidal Function,
Cybenko, paper
- The capacity of the network increases with more hidden units and more
hidden layers


https://en.wikipedia.org/wiki/Neuropsychological
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Presynaptic_cell
http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

Key |Idea behind Backpropagation

- We don'’t have targets for a hidden unit, but we can compute how fast the error changes as
we change its activity

- Instead of using desired activities to train the hidden units, use error derivatives w.r.t. hidden
activities

- Each hidden activity can affect many output units and can therefore have many separate
effects on the error

- These effects must be combined
- We can compute error derivatives for all the hidden units efficiently

- Once we have the error derivatives for the hidden activities, it's easy to get the error
derivatives for the weights going into a hidden unit: This is just the chain rule!



Neural Network

Sigmoid (x) : a(x) =1/ (1+e¥)

i related to input layer

j : related to hidden layer

k: related to output layer

K: number of neurons in the output layer

b; : biases in the hidden layer.
by, : biases in the output layer.

X;: input information in the input layer.
Wij: weights connecting input to hidden layer.

Wi : weights connecting hidden layer to output layer.

Z] = WUXL + bj=ZiWijxi + bj
Zy =Wy a(Z;) + by
Vi = 0(Zy)

predicted output: Y = 0(Wj (W X; + b;) + by)
actual output : y



Neural network error function E(w)

N= number of samples
N

EW) = ) En(w)

l

E,: Error evaluation for the nth observation

1 R 5
E, = E § ke — n)
k

k: number of output nodes

Sum of Squared Errors for all dataset observations

E(w) = 2

records output nodes

(predicted — actual )?

b; : biases in the hidden layer.
b, : biases in the output layer.

X;: data coming from the input layer.
W;j: weights connecting input to hidden layer.
Wi : weights connecting hidden layer to output layer.

Z] = M/l]XL + bjz Ziwijxi + b]

X; = O'(WinL' + bj) : data coming from the hidden layer
Zk = M/jk O'ZJ + bk

Ve = 0(Zy)

Ik = o(Wj o(W;jX; + b;) + by)



Compute the output layer error with the gradient of the Loss Function

OE,(w) _ 0 G ZkOni—yn)?)

The output layer error:

b; : hidden layer biases
by, : output layer biases

6ij aij X;: datain the input layer.
R 9 (ynk_ yn) R ) (ynk) W;j: hidden layer wei-ghts.
— — —_— L — — —_— W;,: output layer weights.

(Ynk — Ynk) W 1 Vnk — Yn) W 1 ik

We know that the predicted outcome for data point n in out output layer K is:
/\
Ve = oWy a(WyiX; + by) + by) or  Inie = 0(Zi)

We write X; = a(W;;X; + b;) and for convenience: X; =o(Z;)

6En-(w) _ 0 Onk) _ (4 a(?)nk) 0Zy,

Using the chain rule: =5, "= = Vnk — Yn) Wy (Gnk = yn) 0Z), oW

Next ->



Compute the output layer error with the gradient of the Loss Function

b; : hidden layer biases

We have: aEn(W) . 8<gnk) aZk; by, : output layer biases
aij - (ynk - yn) 8Z]€ 8ij X;: datain the input layer.

W;j: hidden layer weights.

Wiy : output layer weights.

The derivative of sigmoid function o(z) : ag(;) =o(z)(1 — o(x))
Where Sigmoid(x): o(x)=1/(1+e€7%)

. JE, ~
Thus: 2 = Dk — ) 0(Zi) (1 — 0(Z))X;

6ij



Backpropagation: Output to hidden layer
Using the gradient descent update rule: MW 6 W ool ~+ Aw

JE,(w)
6ij

The AW is now given by: = (nk — Yn) U(Zk)(l - U(Zk))Xj
En(w)

r 3

As such, varying the w_ value

urrent

gets closer to the optimal weight

W

v

wo



Useful derivatives for different activation functions

name function derivative
Tanh tanh(z) = :’;‘;Eg;:ﬁgg:g 1/ cosh?(z)

1. i 0
RelLU ReLU(z) = max(0, z) {O’ !f i Z ;
Y IT Z =



learning rate;0 <n <1 XNy, Ny, N3

. . Assume : n=0.1 0(Z;): Na, Ng
Backward pass: Updating W, o S
x1=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: %,=N, =0.2 Ng =0.8176
- aforward pass, and a backward pass xs=N3 =0.7 N, =0.875

Woa =0.5 Wop =0.7 WOZ=O'5

Wip = 0.6 Wqg = 0.9 WAZ=O‘9

W2A=O.8 WZB=0'8 WBZ:0'9

0.875 W3A=O.6 W33=O.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075




learning rate;0 <n <1 Xi:Ny, Ny, N3

Backward pass: Updating W, (ZON,

x1=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: X,=N, =0.2 Ng =0.8176
- aforward pass, and a backward pass x5=N; =0.7 N, =0.875

Woa =0.5 Wop =0.7 WOZ=O'5

Wip = 0.6 Wqg = 0.9 WAZ=O‘9

W2A=O.8 WZB=0'8 WBZ:0'9

0.875 W3A=O.6 W33=O.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075




learning rate;0 <n <1 Xi:Ny, Ny, N3

Backward pass: Updating W, (ZON,

x1=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: X,=N, =0.2 Ng =0.8176
- aforward pass, and a backward pass x5=N; =0.7 N, =0.875

Woa =0.5 Wop =0.7 WOZ=O'5

Wip = 0.6 Wqg = 0.9 WAZ=O‘9

W2A=O.8 WZB=0'8 WBZ:0'9

0.875 W3A=O.6 W33=O.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

1
Ko = ZNA = Wopgy +O)1AX§ )

1
ZN - wOB +C013x1()

+ a)Zsz(l) + ngxél) = 1.32

% wZsz(l) G w33x§1) =1.5



learning rate;0 <n <1 Xi:Ny, Ny, N3

Backward pass: Updating W, (ZON,

x1=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: X,=N, =0.2 Ng =0.8176
- aforward pass, and a backward pass x5=N; =0.7 N, =0.875

Woa =0.5 Wop =0.7 WOZ=O'5

Wip = 0.6 Wqg = 0.9 WAZ=O‘9

W2A=O.8 WZB=0'8 WBZ:0'9

0.875 W3A=O.6 W33=O.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

1 1 1
Z;j = Zy, = Woa + wlef ) + wZsz( )+ ngx§ ) =1.32
Zy, = Wop + wlel(l) + wZsz(l) I w33x§1) = 1.5



learning rate;0 <n <1 XNy, Ny, N3

Backward pass: Updating W, e AN

x,=N; =0.4 N, =0.7892

- Feed forward neural network learning in two phases: %,=N, =0.2 Ng =0.8176

- aforward pass, and a backward pass xo=N, =0.7 N,=0.875
WOA =05 WOB =07 W02=0.5
wis = 0.6 wig=0.9 | w,,=0.9
w;,=0.8 wp=0.8 | wpz=0.9

0.875 w3,=0.6 w35=0.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

1 1 1
Z;j = Zy, = Woa + wlef ) + (‘)Zsz( )+ w3Ax§ ) =1.32
Zy, = wop+ wlel(l) + wZsz(l) I w33x§1) = 1.5

Zy = woz + wyz 0(1.32) + wg; 0(1.5)
= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461



learning rate;0 <n <1 XNy, Ny, N3

. . Assume : n=0.1 0(Z;): Na, Ng
Backward pass: Updating W,

J(Zk): N,

x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x5=N; =0.7 N, =0.875

- Feed forward neural network learning in two phases:
- aforward pass, and a backward pass

woa =0.5 wog =0.7 | wgz=0.5
wip = 0.6 wig=0.9 | wy,=0.9
WwW,,=0.8 w,p=0.8 wgz=0.9
0.875 w3,=0.6 w35=0.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

Wnew = Wcurrent + nAWcurrent

Zj= Zy, = woa + w142 + woax D + wagxV =132 MWeyprenr = Gk — ¥) 0(Z)(1 - 0(Z))a(Z))
Zy, = wop + wwxlm + wzgxz(l) + w33x§1) =15 = residual error * 0(Z)(1 - 0(Zy))o(Zy,)

Zy = woz + wyz 0(1.32) + wg; 0(1.5)
= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461



Backward pass: Updating W,

- Feed forward neural network learning in two phases:
- aforward pass, and a backward pass

0.875

1
Z] = ZNA = wgyy T+ O)1AX§ )

1
ZNB - O)OB + (Ulel( )

+ (DZAxZ(l) 5 w3Ax§1) = 1.32 AWeyrrent =

(1
+ WypX,

)+ w33x§1) = 1.5 ==
Zy = woz + wyz 0(1.32) + wg; 0(1.5)

= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461

Whew =

WazZ—new =

learning rate;0 <n <1 XNy, Ny, N3

Assume : n=0.1 0(Z;): Na, Ng
G(Zk): Nz
x;=N; =0.4 | N,=0.7892
X2=N2 =02 NB =08176
x=N;=0.7  |N,=0.875
Woa =0.5 Wop =0.7 WOZ=O'5
Wip = 0.6 Wqg = 0.9 WAZ=O‘9
W2A=O.8 WZB=0'8 WBZ:0'9
W3A=O.6 W33=O.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

Wcurrent + r) churrent

G = ¥)0(Zi)(1 - 0(Zy))o(Z))
residual error * a(Z)(1 - 0(Z))o(Zy))
Waz + AW yrrent

=0.9 + (0.1 x 0.0067) = 0.90067



learning rate;0 <n <1

Xi:Nli NZI N3

. . Assume : n=0.1 o(Z;): Na, Ng

Backward pass: Updating W, i
x;=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: %,=N, =0.2 Ng =0.8176

- aforward pass, and a backward pass x5=N3 =0.7 N, =0.875

Wop =0.5 Wog =0.7 woz=0.5
Wia = 0.6 Wi = 0.9 Wxz=0.90067

w,,=0.8 w,p=0.8 wpz=0.9

0.875 W3,=0.6 W3=0.4

Wnew = Wcurrent + nAWcurrent

1
Z] o ZNA = Wopgy + O)1AX§ )

1
ZNB - O)OB + (Ulel( )

+ wZsz(l) + w3Ax§1) = 1.32

+ gk ® 4 w33x§1) — 15 = residual error * o(Z)(1—0a(Zy))o(Zy)

2
Zy = woz + wyz 0(1.32) + wg; 0(1.5)
= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461

Waz—new = Waz + NAWcyrrent

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

AWeyrrent = (Ui . Y) U(Zk)(l . O-(Zk,))o-(zj)

=0.9 + (0.1 x 0.0067) = 0.90067




Backward pass: Updating W,

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

XD |

0.875

1
Z]- = ZNA = Wy +w1Ax§ )

1
ZN - wOB +C013x1()

+ a)Zsz(l) + ngxél) = 1.32

% wZsz(l) G w33x§1) =1.5

learning rate;0 <n <1

Xi:Nlr NZ: N3

Assume : n=0.1 O’(Z}-): Na, Ng
J(Zk): Nz

x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x5=N; =0.7 N, =0.875

WOA =05 WOB =07 WOZ=0'5

WlA = 06 WlB = 09 WAZ=090067

WZA=O.8 WZBZO.S WBZ:O.g

W3A:0.6 W3B:0'4

Assume actual y=0.8 2

residual error =0.875-0.8 =0.075




Backward pass: Updating W,

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

XD |

D 0.875
me
1 1 1
Z;j = Zy, = Woa + wlef ) + (‘)Zsz( )+ w3Ax§ ) =1.32
Zy, = wop+ wlel(l) + wZsz(l) I w33x§1) = 1.5

Zk = Woz oo Waz 0(132) + Wpy 0(15)
— 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

learning rate;0 <n <1

Xi:Nlr NZ: N3

Assume : n=0.1 O’(Z}-): Na, Ng
J(Zk): Nz

x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x5=N; =0.7 N, =0.875

WOA =05 WOB =07 WOZ=0'5

WlA = 06 WlB = 09 WAZ=090067

WZA=O.8 WZBZO.S WBZ:O.g

W3A:0.6 W3B:0'4

Assume actual y=0.8 2

residual error =0.875-0.8 =0.075




Backward pass: Updating W,

- Feed forward neural network learning in two phases:

a forward pass, anvdv a backward pass
0A

!
Wop + WqpX{

- (1)
= Wopgy + Cl)lel

(1)

}

+ WoypX

+ WypX

(1
2

(1
2

)+ waax? = 1.32
) + 0)3Bx§1) == 15

Zk = Woz sf Waz 0(132) + Wpy 0(15)

= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

0.875

learning rate;0 <n <1

Xi:Nlr NZ: N3

Assume : n=0.1 O’(Z}-): Na, Ng
J(Zk): Nz
x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x3=N;3 =0.7 N, =0.875
WOA =05 WOB =07 WOZ=0'5
WlA = 06 WlB = 09 WAZ=090067
WZA=O.8 WZBZO.S WBZ:O.g
W3A:0.6 W3B:0'4
Assume actual y=0.8 2
residual error =0.875-0.8 =0.075
Wnew = Wcurrent + nchurrent




Backward pass: Updating W,

learning rate;0 <n <1

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

XD |

0.875

1
L = ZNA = Wopgy +O)1AX§ )

+ a)Zsz(l) + ngxél) = 1.32

Zy = wgg t+ wlel(l) + wZsz(l) I w33x§1) = 1.5

Zk - wOZ oo Waz 0(1.32) + Wpy 0(1.5)
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

Xi:Nli NZ: N3

Assume : n=0.1 0(Z;): Na, Ng
J(Zk): Nz
x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x3=N;3 =0.7 N, =0.875
WOA =05 WOB =O7 WOZ=0'5
WlA = 06 ng = 09 WAZ=090067
WZA:O.S WZBZO.S WBZ:O.g
W3A:O.6 W3B:0'4
Assume actual y=0.8 2
residual error =0.875-0.8 =0.075
Wnew = Wcurrent + nchurrent

AWcyrrent

= Ok — ¥) 0(Z)(1 - 0(Z))o(Z))
= residual error * O'(Zk)(l — U(Zk))G(ZNB)




learning rate;0 <n <1

Xi:Nli NZ: N3

. . Assume : n=0.1 0(Z;): Na, Ng
Backward pass: Updating W |
P P g BZ a(Zi):N,
x;=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: %,=N, =0.2 Ng =0.8176
- aforward pass, anvdv a backward pass x5=N; =0.7 N, =0.875
6D} 0A
X
v 1 wWgp =0.5 Wog =0.7 Wy=0.5
WlA = 06 ng = 09 WAZ=090067
xgl) 0.875 WZA:O.S WZBZO.S WBZ:O.g
W3A:O.6 W3B:0'4
(1) Assume actual y=0.8 2
X
3 residual error = 0.875 — 0.8 = 0.075

Z;j = Zy, = Woa + wlefl) + a)Zsz(l) G ngxél) = 1.32

Wnew = Wcurrent + nAWcurrent

MWeyrrent = Ok — ¥) O'(Zk)(l - U(Zk))a(zj)
ZNB = wgp + w13x1(1) + w23x2(1) + w33x§1) =1.5 = residual error * O'(Zk)(l — U(Zk))U(ZNB)
Zk = Woz sf Waz 0(1.32) + Wpy 0(1.5) WBZ—neW = WBZ + nchur‘rent

= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461 =0.9 + (0.1 x 0.0069) = 0.90069



learning rate;0 <n <1 Xi:Ny, Ny, N3

. . Assume : n=0.1 o(Z;): Na, Ng
Backward pass: Updating W, i
x;=N; =0.4 N, =0.7892
- Feed forward neural network learning in two phases: %,=N, =0.2 Ng =0.8176
. - aforward pass, anvdVOAa backward pass x5=N3 =0.7 N, =0.875
% 1 Wos =0.5 Wog =0.7 Wo,=0.5
Wia =06 wig=0.9 W,z=0.90067
XD 0.875 W,=0.8 W,=0.8 wpz=0.90069
w3,=0.6 w3p=0.4
X?El) Assume actual y=0.8 2

residual error =0.875-0.8 =0.075

Wnew = Wcurrent + r)AWCHTTETlt

= - (1) (1) () _
Zj u ZNA = W4 TilgaXy T Wgak; Tl3aXz T = 1.32 MAWeyrrent = Uk — ¥) U(Zk)(l = U(Zk))a(zj)
ZNB = wgp + wlel(l) + wZsz(l) + w33x§1) =1.5 = residual error * O'(Zk)(l — O'(Zk))O'(ZNB)
Zk = Woz sf Waz 0(1.32) + Wpy 0(1.5) WBZ—neW = WBZ + nchur‘rent

= 0.5+ 0.9(0.7892) + 0.9(0.8176) = 1.9461 =0.9 + (0.1 x 0.0069) = 0.90069



Backward pass: Updating W,

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

5 1
D 0.875
me
1 1 1
Z;j = Zy, = Woa + wlef ) + wZsz( )+ ngx§ ) =1.32
Zy, = Wop + wlel(l) + wZsz(l) I w33x§1) = 1.5

Zk - wOZ oo Waz 0(1.32) + Wpy 0(1.5)
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

learning rate;0 <n <1

Xi:Nli NZ: N3

Assume : n=0.1 0(Z;): Na, Ng
J(Zk): Nz

x,=N,;=0.4 | N,=0.7892
X2=N2 =02 NB =08176
xs=N;=0.7  |N,=0.875

Woa =0.5 Wog =0.7 WOZ=O'5

Wip = 0.6 Wig = 0.9 WAZ=090067

W2A=0.8 W23=0.8 WBZ:090069

w3,=0.6 w3p=0.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075




Backward pass: Updating W,

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

X |
D 0.875
me
1 1 1
Z;j = Zy, = Woa + wlef ) + wZsz( )+ ngx§ ) =1.32
Zy, = Wop + wlel(l) + wZsz(l) I w33x§1) = 1.5

Zk - wOZ oo Waz 0(1.32) + Wpy 0(1.5)
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

learning rate;0 <n <1

Xi:Nli NZ: N3

Assume : n=0.1 0(Z;): Na, Ng
J(Zk): Nz

x,=N,;=0.4 | N,=0.7892
X2=N2 =02 NB =08176
xs=N;=0.7  |N,=0.875

Woa =0.5 Wog =0.7 WOZ=O'5

Wip = 0.6 Wig = 0.9 WAZ=090067

W2A=0.8 W23=0.8 WBZ:090069

w3,=0.6 w3p=0.4

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075




Backward pass: Updating W,

- Feed forward neural network learning in two phases:

- aforward pass, anvdv a backward pass
0A

x! 1
e 0.875
X
1 1 1
Z;j = Zy, = Woa + wlef ) + wZsz( )+ w3Ax§ ) =1.32

1
ZNB - O)OB + (Ulel( )

% wZsz(l) G w33x§1) =1.5
Zk - wOZ sf wAZ 0(1.32) + (UBZ 0(1.5)

= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

learning rate;0 <n <1

Xi:Nli Ny, N3

Assume : n=0.1 0(Z;): Na, Ng
G(Zk): N,
x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x3=N;3 =0.7 N, =0.875
WOA =05 WOB =07 WOZ=O'5
W]_A = 06 W].B = 09 WAZ=090067
W2A=0.8 WZB=0'8 WBZ:090069
w3,=0.6 w3p=0.4
Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075
Wnew = Weyrrent T 77AWcurrent

AWcyrrent

= Ok — ¥) 021 - 0(Z))o(2)

= 0.075%0.87 x0.13 1 = 0.008




learning rate;0 <n <1 XNy, Ny, N3

. . Assume : n=0.1 0(Z;): Na, Ng
Backward pass: Updating W |
p p g 07 a(Z):N,
x,=N, =0.4 N, =0.7892
- Feed forward neural network learning in two phases: X,=N, =0.2 Ng =0.8176
- aforward pass, and a backward pass x5=N; =0.7 N, =0.875
(1) 0A
X
i 1 WOA =05 WOB =07 WOZ=O'5
W]_A = 06 W].B = 09 WAZ=090067
xgl) 0875 W2A=0.8 WZB=0'8 WBZ:090069
w3,=0.6 w3p=0.4
@D Assume actual y= 0.8 2>
3 residual error = 0.875-0.8 = 0.075
Wnew = Wcurrent + nchurrent
Z; = Zy, = woa + w1 + wy0x P + w3V = 1.32 - .
j = 4N, = Woa T W1aXy WopX, W3pX3 "~ = 1. AwWeyrrent = (D y)O'(Zk)(l O-(Zk))a(zj)
- (1) (1) (1)
Zy, = wop + W1pX; " + WapX,’ + Wapx; = 1.5 = 0.075 * 0.87 % 0.13 * 1 = 0.008

Zy = woz + waz 6(1.32) + wpz 0(1.5)

Woz- = Woz + 1w
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461 0zmmew = 702 curment

= 0.9 + (0.1 x 0.0069) = 0.90069



Backward pass: Updating W,

- Feed forward neural network learning in two phases:
- aforward pass, anvdv a backward pass
0A

1
e |
e 0.875
X
1 1 1
Z;j = Zy, = Woa + wle£ Vs a’zsz( )+ w3Ax§ ) =1.32

(1)

- 1 €
ZNB = Wop + WXy

+ wypXx, )+ w33x§1) =1.5

Zk - wOZ oo Waz 0(1.32) + Wpy 0(1.5)
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

learning rate;0 <n <1

Xi:Nli Ny, N3

Assume : n=0.1 0(Z;): Na, Ng
G(Zk): N,
x;=N; =0.4 N, =0.7892
X2=N2 =02 NB =08176
x3=N;3 =0.7 N, =0.875
Woa =0.5 Wog =0.7 Wwyz=0.5008
wip =0.6 wig=0.9 WwW,z=0.90067
W2A=O.8 WZB=0'8 WBZ=090069
W3A=0.6 W3B=0'4
Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075
Wnew = Wcurrent + nAWcurrent

Aweyrrent = Ok — ¥) U(Zk)(l . O-(Zk))a(zj)

= 0.075%0.87 x0.13 1 = 0.008

Woz—new =

Woz + NAWeyrrent

= 0.5+ (0.1 x0.008) = 0.5008




Backward pass: Updating W ,

- Feed forward neural network learning in two phases:
- aforward pass, anvdv a backward pass
0A

}

0.875

learning rate;0 <n <1

Xi:Nli NZI N3

Assume : n=0.1 0(Z;): Na, Ng
G(Zk): Nz
x;=N;=0.4 | N,=0.7892
X2=N2 =0.2 NB =0.8176
x;=N;=0.7 | N,=0.875
Won =0.5 Wog =0.7 Wo,=0.5008
wip =0.6 wig=0.9 WwW,z=0.90067
W2A=O.8 WZB=0'8 WBZ=090069
W3A=0.6 W3B=0'4

ZNA = Woa + CU1AX§1) + (JJZAXZ(I) + ngxgl) = 1.32

AWhidden

Assume actual y=0.8 2
residual error = 0.875-0.8 =0.075

= residual error * error of the hidden layer x weighted error of the output layer

da(Z;) . 0o (Zy)

AWhiggen = (J — y) * W, I Wy



Termination Criteria: When to stop training

- Criteria for terminating the training process can be dictate by:
- Time: Risk degradation in model performance
- Threshold of prediction error/minimum accuracy with training
data: Risk overfitting
- Cross-validation procedure to determine when to stop training
- Save a portion of the data not used for training and testing
- For example: with k-fold cross-validation, the training data is
divided into k subsets (or "folds")
- The model is trained on k-1 folds and validated on the

Error

Epoch: number of times the
learning algorithm works
through the training data
Batch: Epochs have one or
more batches

Increasing Variance

remaining fold. This process is repeated k times, each time
with a different fold used for validation. The model's
performance is then averaged over these k iterations.

Regardless of the termination criteria used, the NN is not guaranteed to
arrive at the global minimum for the SSE as it may become stuck in a
local minimum which still represents a good , if not optimal solution

medium.com



Wrapping up

- Once all the weights are updated, we complete one round of backpropagation
- One forward pass followed by a backward pass are counted as one full pass

- With the updated weights, we then obtain the predicted output for the next data point, in
another forward pass and compute the prediction error

- We repeat this until termination/stop criteria is reached which is termed that the model has
converged



Vanishing Gradient Problem

Vanishing Gradient Problem can occur during the
training of NN when the gradient of the loss function
wrt the weights in the lower layers of the network
become very small

Small gradient do not contribute much to the weight
updates during training. As a result, it can slow or even
halt learning those layers as the weights are not being
updated effectively

The problem is a result of the multiplicative effect of
small derivatives of activation functions in deep
networks



Examples of Activation Functions and Their Impact

— sigmoid (1.0)
10 Derivatives for activationl functiolns — sigmoid (2.5)
— tanh
- Sigmoid Function: It squashes its input to a range between 0 and 1. Its - i
. . . . . — softplus
derivative is maximal at 0.25 and decreases toward 0 as the input moves gaussian

away from 0. In deep networks, multiplying these small values can quickly
lead to vanishing gradients.

- Tanh Function: Similar to sigmoid, but squashes input to a range between
-1 and 1. It suffers from the same problem as sigmoid for high absolute
values of input.

- ReLU (Rectified Linear Unit): Introduced as a solution to the vanishing
gradient problem. It does not saturate in the positive input range and has a
derivative of either 0 (for negative inputs) or 1 (for positive inputs). However,
ReLU can lead to another issue called the "dying ReLU problem," where
neurons only output negative values and thus have a derivative of zero,
effectively "dying."
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