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Intended Learning Outcomes

- Describe how deep neural networks differ from more simple ones
- Particular attention to the importance of hyperparameters (some similarities with simple 

networks)
- Be familiar with different gradient updates and when to use them

- Be cognisant of what they mean in terms of potential issues including oscillations
- Understand and apply the ‘momentum’ concept

- Be familiar with and apply different search strategies
- Be familiar with and apply different regularisation techniques
- Be familiar with and apply stopping criteria



Training a neural network: Backpropagation

The cost for one data-point x



Training a neural network: Backpropagation

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Average over all training examples



Training a neural network: Backpropagation

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Recall: Gradient weight update described as: 

Cost for one update/step down the gradient is considerable



Backward pass: Updating W1A

- Feed forward neural network learning in two phases: 
- a forward pass, and a backward pass



Training a neural network: 

Recall from previous lecture: batch and stochastic GD



Batch and epochs

Batch: Number of datapoint partitions considered in 
training

- Need to have equal size
- If batch = 1 we’re using all the data

Epoch: Number of batches

- Need to go through all to have one pass 
through.



Batch, Stochastic and mini-batch GD
i  is iteration index, alpha is the learning ratehere, m is the number of training samples, b are the batches
Hypothesis (aka y hat):

Const function: 

Batch:
- Take all the data and iterate 

through

Stochastic:
- Take a randomly shuffled 

subset of the data
- the gradients are calculated on 

one random shuffled part out of 
partitions (could be more)

Mini-batch
- The gradients are calculated 

with subsets of all observations 
in each iteration 



Training a Neural Network using Stochastic GD

- For each training input perform the following to complete 1-epoch:
• Complete one feed-forward pass
• Compute the squared loss for the training sample
• Complete one backward pass (backpropagation) and update the weights using the 
gradient descent weight update rule

- Measure the mean squared loss (i.e., error) for each epoch and plot (for the training set and 
the test set)

- This average loss is plotted over time (epochs) to monitor the progress of the training 
and to identify when the network has converged to a minimum loss



Batch/’mini-batch’ gradient descent

• For the training inputs in each batch, perform the following to complete 1-epoch:
- Complete one feed-forward pass
- Compute the average squared loss for the training samples in the batch
- Complete one backward pass (backpropagation) and update the weights using the gradient 

descent weight update rule

• Measure the mean squared loss (i.e., error) of the epochs for each epoch and plot (for the 
training set and the test set)

• This average loss is plotted over time (epochs) to monitor the progress of the training and to 
identify when the network has converged to a minimum loss.

• If all the training data is in one batch, the weight update in neural network training would be done 
once per epoch, after computing the gradients of the loss with respect to the weights using the 
entire batch.



Plotting the loss using gradient descent

Recall: Gradient weight update described as:

Epoch



Deep Neural Networks

- Until now we have largely used simple neural networks for our examples

- Deep neural networks (DNNs) have multiple hidden layers between the input and output 
layers.

- These hidden layers allow the network to learn more complex and abstract representations of 
the input data, which can lead to better performance on tasks:

- Example: mage recognition, natural language processing, and speech recognition.

- Basics: each layer consists of multiple neurons that perform a weighted sum of the inputs and 
apply a non-linear activation function to the result.

- The outputs of the neurons in one layer serve as the inputs to the next layer, and this process 
is repeated until the final output layer produces a prediction or decision based on the input.



Hyperparameters are important controls for performance

- Hyperparameters are variables that determine the structure of a Deep Neural Network

- The weights of the model are not hyperparameters 

- They can increase accuracy and control how the network is trained.

- Examples of Hyperparameters:
- Number of hidden layers
- Number of neurons at each hidden layer
- Hidden layer activation function
- Momentum term value
- Learning rate value
- Number of epochs
- Batch size in mini-batch 
- Regularization Parameter value



Recall: Oscillations are problematic in training

- There is a trade-off between the learning rate and  the momentum term

- This is particularly common when tuning parameters like batch size and using 
stochastic gradient descent



If the loss landscape is simple oscillations are rare

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html



Unfortunately, simple loss landscapes are rare

- The learning rate has a big impact 
on how fast and if a model 
converges

- Red: small steps and converges 
slowly

- Green: big steps, could miss
- Blue: in-between
- Not knowing what the ‘landscape’ 

looks like makes estimating the 
learning rate an important 
question 

https://julien-vitay.net/lecturenotes-neurocomputing/2-linear/1-Optimization.html



Low learning rate (λ)



Low learning rate (λ) can get stuck



High learning rate (λ) is much faster



High learning rate (λ) can miss



Take the updates for stochastic gradient descent:

Where we now denote the stochastic part writing g: 

We can introduce ‘velocity’ as:

Where the v term is:

Here, the rho is the ‘momentum’ and the full wight update is:

Where the second RHS is the ‘velocity jump’ and the third is the ‘gradient jump’

Adding momentum



Adding the ‘momentum’ parameter



Momentum
Momentum is a term used in optimization algorithms such as stochastic gradient descent with 
momentum. It can also be used with mini-batch GD optimization method

 It is a technique used to speed up the convergence of the optimization process and prevent the 
optimization from getting stuck in local minima

Backpropagation is made more powerful with the addition of a momentum term α

Momentum (α) helps to know the direction of the next step with the knowledge of the previous 
steps.

It helps to prevent oscillations. The momentum term represents inertia.

 The momentum term helps to smooth out the oscillations in the gradient updates, which can result 
in faster convergence to the optimal solution.

It allows the optimization process to continue in the same direction as the previous updates, which 
can help to navigate around small bumps or ridges in the optimization landscape.

 



Momentum
Small values of α reduce the inertial effects as well as the influence of the recent adjustments, until 
α=0.

Larger values of α allows the algorithm to move in the same direction as the previous weight 
adjustments.

Commonly, momentum is first initialized to 0.9 , but it is then tuned similar to learning rate (learning 
rate is a value between 0 and 1), during the training process.

A typical choice of momentum is between 0.5 and 0.9.

It is common to start with a low momentum value (e.g., 0.5) at the beginning of training, and then 
gradually increase it as training progresses (e.g., to 0.9).

A low momentum value allows the optimization process to explore the optimization landscape more 
widely in the early stages of training, while a higher momentum value can help the optimization 
process to converge more quickly towards the global minimum in the later stages of training. 
Learning w rate value can also be adopted over epochs.



Optimisation strategies: Manual Search

- Through controlled experiments where each experiment is one combination of 
hyperparameter values.

a) Keep all hyperparameters constant except one.

b) Analyze the effect and make decision about which hyperparameter to change next.

c) Repeat.

- Drawback: each experiment requires training the model end-to-end, and can be very slow for 
Deep Learning algorithms (e.g., CNN)



Optimisation strategies: Alternatives

Other model hyperparameter optimization techniques offer ways to automatically find the best 
possible combination of hyperparameter values for a machine learning model. 

Methods include:

- Cross Validation Grid search
- Random search
- Bayesian optimization
- Hyperband

Optimization is a non-trivial task…



Optimisation strategies: Grid Search

- Grid search automates the “trial-and-error” process
- Assume the following hyperparameters in an Artificial Neural Network taking multiple possible 

values:
- Number of hidden layers :[1,2,3,4,5]
- Number of neurons in each layer: [4,5,6,7,8]
- Number of epochs: [10,30,50,70,100]

- > Total number of possible combinations: 53



Grid Search

- Grid search is a technique that involves defining a 
grid of hyperparameters to explore

- For each point on the grid, we evaluate the 
performance of the model using the combination 
of hyperparameters on a validation set

- The hyperparameters that result in the best 
performance on the validation set are then chosen 
as the optimal hyperparameters

Example grid-search.ipynb 



Regularisation: Preventing overfitting

- Regularization in deep neural networks is a technique used to prevent overfitting
- Occurs when a model is trained too well on the training data and does not generalize well to 

unseen data



From L5: L1 and L2 regularization are convex functions
L2 ‘Ridge’: Squared magnitude of the coefficient

Encourages weights to be close to zero
MSE

Penalty term

L1 Lasso: Sum of absolute values of the coefficient 

Encourages weights to be exactly zero
MSE Penalty term



From L5: L1 and L2 regularization: Takeaways 

- We can encourage the weights to be small by choosing as our regularizer the L2 penalty.

- Note: To be precise, the L2 norm is Euclidean distance, so we’re regularizing the squared L2 
norm.

- The regularized cost function makes a tradeoff between fit to the data and the norm of the 
weights.

- If you fit training data poorly, J is large. If your optimal weights have high values, R is large.

- Large λ penalizes weight values more.

- Like M, λ is a hyperparameter we can tune with a validation set.



Dropout regularisation

- At every iteration (1 feedforward pass followed by 1 backward 
pass):

- Select random fraction of input units to remove along with 
all of their incoming and outgoing connections

- A Dropout rate of 0.2 means that 20% of the input units are 
randomly dropped during training. 

- Similarly, a Dropout rate of 0.5 means that 50% of the input 
units are randomly dropped during training. 

- The probability of choosing the number of nodes to be dropped 
is the hyperparameter of the dropout function.



Termination Criteria: When to stop training
- Criteria for terminating the training process can be dictate by:

- Time: Risk degradation in model performance
- Threshold of prediction error/minimum accuracy with training 

data: Risk overfitting
- Cross-validation procedure to determine when to stop training

- Save a portion of the data not used for training and testing
- For example: with k-fold cross-validation, the training data is 

divided into k subsets (or "folds")
- The model is trained on k-1 folds and validated on the 

remaining fold. This process is repeated k times, each time 
with a different fold used for validation. The model's 
performance is then averaged over these k iterations.

Regardless of the termination criteria used, the NN is not guaranteed to 
arrive at the global minimum for the SSE as it may become stuck in a 
local minimum which still represents a good, if not optimal solution

Epoch: number of times the 
learning algorithm works 
through the training data
Batch: Epochs have one or 
more batches

medium.com



Vanishing Gradient Problem

- Vanishing Gradient Problem can occur during the 
training of NN when the gradient of the loss function 
wrt the weights in the lower layers of the network 
become very small 

- Small gradient do not contribute much to the weight 
updates during training. As a result, it can slow or even 
halt learning those layers as the weights are not being 
updated effectively

- The problem is a result of the multiplicative effect of 
small derivatives of activation functions in deep 
networks

w

E(w)



Examples of Activation Functions and Their Impact

- Sigmoid Function: It squashes its input to a range between 0 and 1. Its 
derivative is maximal at 0.25 and decreases toward 0 as the input moves 
away from 0. In deep networks, multiplying these small values can quickly 
lead to vanishing gradients.

- Tanh Function: Similar to sigmoid, but squashes input to a range between 
-1 and 1. It suffers from the same problem as sigmoid for high absolute 
values of input.

- ReLU (Rectified Linear Unit): Introduced as a solution to the vanishing 
gradient problem. It does not saturate in the positive input range and has a 
derivative of either 0 (for negative inputs) or 1 (for positive inputs). However, 
ReLU can lead to another issue called the "dying ReLU problem," where 
neurons only output negative values and thus have a derivative of zero, 
effectively "dying."



Wrapping up

- Once all the weights are updated, we complete one round of backpropagation
- One forward pass followed by a backward pass are counted as one full pass

- With the updated weights, we then obtain the predicted output for the next data point, in 
another forward pass and compute the prediction error

- We repeat this until termination/stop criteria is reached which is termed that the model has 
converged


