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Abstract Silicon sampling is the emerging science
of using large language models to simulate objects of
sociological interest. The diversity of silicon sampling
prompting strategies – as well as debates across the
lines of philosophy, computer science, social science,
and AI ethics – suggest widespread disagreement
about what large language models are. This paper
proposes an integrative view of large language mod$
els (the NaaPS model) that attempts to unify these
disparate perspectives. This paper argues that silicon
sampling practitioners should feel comfortable com$
mitting to the existence of boundedly-realistic simu-
lacra that are realized by LLM$based systems, but they
should also be ready to examine lower levels of ab$
straction to describe and expain when simulacra fail or
to enhance their performance. This paper maps several
layers of abstraction and reductions between them,
sorts common prompting techniques by their level
of abstraction, and provides a thought experiment to
illustrate how boundedly$realistic simulacra can be
realized by conditional probability distributions. The
ambition of this paper is to show how more detailed
consideration of the ontology of large language models
can justify and improve silicon sampling practice.

1 Introduction
There is an emerging science of using large language
models for simulation, including simulation of soci$
eties [1], demographics [2], [3], [4], and states [5].
Many of these studies use prompting techniques to
induce desirable simulation responses from language
models. At the moment, these prompts vary widely,
with little standardization across practitioners or
across tasks. Some prompts induce behavior through
examples or by building a narrative. Some prompts
address the model like a polling respondent or survey
participant. Others address the model like a research
assistant. Still others address the model as a role$
player or simulator.

Def. Silicon Sampling
Using large language models as simulators of objects of
sociological interest.

Term originates from [3]. Definition generalized from [3] and
other works including [6], [7], [8]

This is not a paper about prompt engineering. I high$
light the differences in prompts only to emphasize
the following observation. Practitioners in the new
science of simulating humans and human systems
with language models (silicon sampling) take vastly

Ideologically, I describe myself as liberal.
Politically, I am a strong Democrat. – [3]

“It is [YEAR]. You are a [AGE] year-old,
[MARST], [RACETH] [GENDER] with [EDUCATION]

making [INCOME] per year…” – [8]

Pretend you are a Democrat. – [6]

Figure 1: Examples of silicon sampling prompting techniques.

different approaches in their apparent assumptions
about what (or who) language models are. In other
words, practitioners vary in their apparent ontological
commitments.

This reveals philosophical questions whose answers
will directly inform silicon sampling practice. These
questions include the following. The responses given
in this paper are below each question.

1. How can I know when silicon sampling is working and
when it isn’t? What should I do when it isn’t working?

When simulacral$level (S$level) analysis isn’t working, go
deeper. Probabilistic, Algorithmic, and Numerical levels offer

descriptive, explanatory, and prescriptive tools.
See Section 5.

2. How should I refer to large language models? Is it ok to
talk about ChatGPT as if it has beliefs or desires? Can
I drop the “as if” and say plainly that Claude wants,
knows, or believes something?

Practitioners should feel comfortable committing to the ex$
istence of boundedly-realistic simulacra (BRS) that are

realized by LLM$based systems. See Section 4.

3. I know there is more to learn about the inner workings
of LLMs, but does any of that matter for validity and
performance? I want to do the same social science I
was doing before at a lower cost – why should I care
about viewing an LLM as a neural network or an
assembly of circuits?

Probabilistic, Algorithmic, and Numerical levels offer descrip$
tive, explanatory, and prescriptive tools. See Section 5.

4. How can I explain to others (students, other practition$
ers in my field, lay audiences) what ChatGPT is doing
and why it might be a valid sociological instrument?

LLM$based systems are NaaPS: Numerical, algorithmic, Prob$
abilistic, Simulacral. See Section 3 for a map of the NaaPS
model. See Section 5.4 for a simple thought experiment illus$
traing how boundedly$realistic simulacra can be realized by

conditional probability distributions.
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2 Background

2.1 Language Models
In this section, I will describe the basic features of
large language models.¹

Mathematically, language models model a conditional
probability distribution over sequences of symbols.
The conditional probability of the next symbol
given the previous symbols can be expressed as
𝑃(𝑥𝑛 | 𝑥1, 𝑥2, ..., 𝑥𝑛−1) where 𝑥𝑖 is the 𝑖th symbol in
the sequence. Continuations of sequences can be gen$
erated by sampling a token from the conditional prob$
ability distribution 𝑥𝑖+1 ∼ 𝑃(𝑥𝑖+1 | 𝑥1, 𝑥2, ..., 𝑥𝑖),
appending it to the sequence, and repeating for the
next token 𝑥𝑖+2 ∼ 𝑃(𝑥𝑖+2 | 𝑥1, 𝑥2, ..., 𝑥𝑖+1).

x (input) y (output)
A sentence in English Its French translation
A document Its summary
A demographic descriptor
and a multiple choice ques$
tion

An answer, presumably from
someone in the demographic

Table 1: A table of examples of sequence prediction inputs
and outputs. Table layout and examples are from [9]

Modern approaches approximate this conditional
probability distribution by training a neural network.
Pre$training involves optimizing the (billions of) pa$
rameters of the neural network such that outputs
of the network behave like a conditional probability
distribution. This behavior is enforced by certain fea$
tures of the neural network architecture² and training
methods³.

Today’s large language models are one type of foun-
dation model [10], a general$purpose model that can be
adapted to downstream tasks. The use of foundation
models generally follows a pattern known as transfer
learning: models are first pre-trained on a large volume
of general data (a relatively expensive process, often
taking weeks or months), then adapted for specific
tasks (relatively inexpensive, taking as little as min$
utes).

Adaptation occurs during one or more "post$training"
stages, such as instruction fine-tuning or reward model
tuning. A detailed description of these methods is be$
yond the scope of this paper. In essence, post$training
steers models towards producing useful (rather than
simply probabilistically likely) responses to instruc$
tions.

Importantly, post$training achieves its goals by mak$
ing the useful thing (S$level) the likely thing (P$level),
or by modifying the weights of the neural network
(N$level).

The model is presented with a concentrated dataset of
examples of helpful behavior such that helpful behav$
ior is overwhelmingly likely.

Model capabilities can be expanded even further by
imposing some scaffolding on top of the language
model itself. These techniques include searching a
tree of possible continuations [11], appending search
results to user prompts [12], or using special tokens to
establish interfaces between the language model and
external tools and resources [13]. These techniques
are left out of the present discussion.

2.2 Simulators Hypothesis
The Simulators Hypothesis [14] posits that Large
Language Models generate responses that are a super-
position of the responses of various personas, presum$
ably those occurring in the massive Internet$derived
datasets on which LLMs are trained. The simulators
hypothesis has since seen some attempts at formaliza$
tion – for example, recent work treats the observed
LLM behavior as marginalization over a latent space
of personas [15], [16].

3 The NaaPS model
Figure 2 shows the NaaPS model. This layered ontol$
ogy consists of five levels:

1. N (Numerical) Neural network outputs are computed
by matrix multiplications and activation functions.

2. A (Algorithmic) Computations in the algorithmic
level perform behavior equivalent to algorithms like
addition [17].

3. P (Probabilistic) The language model models a condi$
tional probability distribution over tokens.

4. S (Simulacral) The helpful assistant persona is mani$
fested by autoregressive sampling from a conditional
next$token probability distribution.

5. M (Meta-Simulacral) Users may ask the helpful assis$
tant to act as if it were a different persona, instantiating
a nested simulacrum.⁴

One of the benefits of this integral view is that it
allows us to clearly map out various reductions that
have been waged against LLMs. Three of these, the
Stochastic Parrot Reduction, Numerical Reduction,

¹Many fine details such as sub$word tokenization and speculative decoding will be omitted. NLP practitioners may lament this,
but this section is meant for audiences outside of NLP.

²e.g. softmax activation over logits in the output layer enforces that the outputs satisfy the properties of a probability distribution
³e.g. negative log$likelihood training penalizes the network for assigning low probability to observed token sequences
⁴Additional levels of nested simulation are possible in theory (e.g. “Pretend to be a Republican pretending to be a

Democrat”). I hypothesize that relationships between the simulacral and meta$simulacral levels will be roughly the same. In other
words, the relationship between the 𝑁 th and 𝑁 + 1th meta$simulacral levels and 𝑀 th and 𝑀 + 1th meta$simulacral levels are the
same for any 𝑀,𝑁 .
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Figure  2: The NaaPS model for talking about large language models. Most users of systems like Claude or ChatGPT interact at the
Simulacral level, where it is at least instrumentally useful to attribute some aspects of “personhood” to the system. This level is realized
by the Probabilistic level. The helpful assistant persona is manifested by autoregressive sampling from a conditional next$token probability
distribution. The probability distribution itself is realized by the Numerical level. Next$token probabilities are obtained by number$crunching
– matrix multiplications, attention, normalizations, and activation functions live at the Numerical level. Common reductions (right) shift
attention away from the Simulacral level, reducing behavior at this level to the Probabilistic Level (the “Stochastic Parrot” reduction), the

Algorithmic Level (the “Circuits Reduction”), or the Numerical Level (the Numerical Reduction).

Level Prompting Technique

N
Numerical

“Soft Prompt” Optimization

P
Probabilistic

Few$Shot Examples

Democrat Joe Biden

Republican Donald Trump

Democrat ...

“Hard Prompt” Optimization

S
Simulacral

Direct Persona Instructions

<user>You are a Democrat. Who did
you vote for in 2020?</user>

Poliprompt [18]

You are a stance analyzer. In your
judgment, whether the specific
stance the tweet text expresses
toward the confirmation of
Brett Kavanaugh is approving or
opposing?  ... 

M
Meta$Simulacral

Indirect Persona Instructions

<user>Pretend you are a Democrat.
Who did you vote for in 2020?</
user>

Table 2: Mapping prompting techniques to their ontological level

and Circuit Reduction are described in the following
sections.

The NaaPS model is illustrated as a “layer cake”
diagram, but I do not propose that these abstractions
will stack perfectly or be sharply defined in reality.
In reality I expect that the boundary between some
layers will be blurry.

3.1 The Stochastic Parrot Reduction
Def. Stochastic Parrot Reduction
Language Models are nothing more than next$token
predictors.

Bender and Koller [19] argue that language models
cannot understand. More specifically, they argue that
pure language models cannot relate language forms
(words, tokens) to anything outside of language
(meaning), since nothing outside of language appears
in language model training data. In the brief period
between the publication of [20] and the release of
ChatGPT [21], this argument took on a life of its
own. Bender and Koller concede that even systems for
semantic parsing or reading comprehension⁵ are not
covered by their arguments [19].

3.2 Numerical Reduction
Def. Numerical Reduction
Language Models are nothing more than numerical
machines.

⁵whose training datasets could be directly serialized into plain text, showing that these tasks could be subsumed under the language
modeling framework
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3.3 The Circuit Reduction
Mechanistic Interpretability is a relatively new sub$
field of interpretable machine learning [22]. Broadly,
the goal of mechanistic interpretability is to reverse$
engineer large pretrained models into descriptions
that humans can understand [23]. This goal is often
operationalized as circuit discovery: trying to identify
subnetworks within large Transformer neural net$
works that have dedicated, human$interpretable roles
and functions.

Where does mechanistic interpretability fit in the
NaaPS model? We can distill the philosophy of
mechanistic interpretability into the following Circuit
Reduction:

Def. The Circuit Reduction
Large Language Models are just circuits

To be clear, I imagine that this is an exaggeration of
the views of most practitioners in mechanistic inter$
pretability. Most seem to believe that while mechanis$
tic interpretability can be quite useful, it will not be
omnipotent in explaining the behavior of deep neural
networks.

3.4 Responding to Reductions
How should silicon samplers view each of these re$
ductions? There has been some comparison between
the study of large language models and the study of
complex biological systems. Perhaps we can take cues
from the debates about reduction that have occured in
biology and chemistry. One could argue that all phe$
nomena in biology reduce to phenomena in chemistry.
Are biologists just applied chemists? This seems like a
stretch. An extreme version of this view would argue
that there is no such thing as a cell, only molecules
in certain configurations. On the one hand, reduction
can be useful, enabling for example the paradigm of
small$molecule medicine [24]. On the other hand, re$
duction can seem unproductively deflationary. Those
who defend biology as a separate discipline with its
own valid abstractions look for ways to defend those
abstractions; in other words they look for ways to
resist reduction.

3.4.1 Factors favoring reduction
When science views reduction as successful, this is
often because the reduction has had some useful ex$
planatory, descriptive, or prescriptive power. Reduc$
tions explain, by finding a mechanism at a lower level,
why certain phenomena occur at a higher level. Some$
times this explanation affords intervention, allowing
practitioners to steer high$level phenomena by taking
action at the low level.

This has been the case for mechanistic interpretability,
as well as representation engineering [25], a different
approach with similar goals. In Section  5 I walk

through a case where N$level analysis and interven$
tion allowed highly interpretable control over S$level
phenomena.

3.4.2 Factors favoring abstraction
While reduction has proved useful in both biology
and machine learning, there are also reasons to resist
it. One such reason was posed by Collier [24], who
argued that it is appropriate to resist reduction and
use abstract description if a system is cohesive at the
abstract level of interest. A system is cohesive at some
level if its behavior is not sensitive to fluctuations at
lower levels. On a regular basis, the human body turns
over its cells, and those cells themselves turn over
their molecules. Nonetheless, people and cells main$
tain identities over time – the function of the human
body and the function of the cell goes on relatively
undisrupted by the fluctuations of individual mole$
cules. Likewise, if the behavior of a simulacral survey
respondent is cohesive regardless of the specific ways
questions are phrased, it seems appropriate to regard
the simulacrum as a cohesive entity.

Another argument in favor of abstraction is that it
affords greater predictive power than other views.
Dennett’s Intentional Stance [26] famously argues
that we achieve impressive ability to predict the be$
havior of a diverse array of systems (humans, cats and
dogs, thermostats, computers) by viewing them as in-
tentional systems, attributing them with goals, beliefs,
and desires. There are detailed aspects of the applica$
tion of the intentional stance to LLMs, but in general
I agree with Dennett’s assertion that the intentional
stance is useful for prediction for the aforementioned
systems. Likewise I expect that it will be useful for
silicon samplers. This prompts the question of exactly
how it should be applied. There has been argument
about the application of the intentional stance to
LLMs. It’s not clear what level this arguments occur
at, which is one motivation for proposing the NaaPS
model. But language in some of these arguments
suggests that this debate occurs at the P$level, or at
the level of an undifferentiated system, for example
“ChatGPT wants” or “LLMs communicate”, or similar.

In Section 4, I will argue that this application of the
intentional stance is not quite right, or at least not the
most productive. Rather, the intentional stance should
be applied to the boundedly-realistic simulacra
that are realized by LLM$based systems.

4 Boundedly-Realistic Simulacra
I’ll argue that silicon sampling practitioners are right
in committing to the existence of a boundedly-
realistic simulacrum⁶. Let’s imagine a basic case
of silicon sampling, where the practitioner prompts
ChatGPT with the following text: “Respond as if you
are a 35$year$old male Democrat living in the north$
east United States.” Of course, at this point, a real

⁶In the language of the intentional stance, it is roughly wrong to attribute intentionality to ChatGPT the software system, but
roughly correct to view ChatGPT the helpful assistant persona as a simulacrum of an intentional system
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human Democrat does not appear from thin air. But
so long as the following interactions match what the
practitioner would expect from such a real human, it
seems reasonable for the practitioner to believe that
a simulacrum of a Democrat now exists.⁷ The prac$
titioner proceeds in the interaction by asking some
survey questions about who the simulated Democrat
would vote for and why, records the responses, and
closes the interview. The practitioner gets the sense
that these responses are similar enough to what a
real person with the same demographics might say
– in this sense the simulacrum is realistic. At some
point in an interaction with a real respondent, the
practitioner might thank the participant for their time
and reach out to shake their hand. Obviously a real
handshake cannot occur with ChatGPT, at least not
with the unembodied form accessible through the
web browser. In this sense, the realisticness of the
simulacrum is bounded – it is realistic enough when
interactions are turn$taking responses to survey ques$
tions, but not even close to realistic when interactions
are physical. We can collect these intuitions into the
following defintion:

Def. Boundedly-Realistic Simulacrum
System 𝑋 realizes a boundedly$realistic simulacrum of
𝑌  if 𝑋 behaves sufficiently similar to 𝑌  across a set of
contexts that can be described by bounds 𝐵.

Figure 3: Boundedly$realistic simulation

4.1 Bound-Finding
The existence of bounds is important – these bounds
are what determine whether ChatGPT (or any other
LLM$based system) is fit for use as a sociological
instrument. Figure  3 illustrates this. The simulation
capabilities of LLM$based systems are illustrated like
a block of “swiss cheese” (1) – there are large regions
of acceptable (sufficiently realistic) performance, but
many “holes” where the system displays unaccept$
able (insufficiently realistic) performance. This swiss
cheese is a flattened represesentation of the multi$
dimensional set of contexts – the widest set that prac$
titioners can imagine. The blue region (2) represents
a smaller set of contexts – the set that practitioners
need. Validity problems (3) occur when practitioner

needs are unmet by the simulation capabilties of the
system.

How might these bounds become known? Some are
obvious – they can be inferred directly from the
nature of the simulator. No one would expect to be
able to reach out through their browser and shake the
hand of the human democrat simulacrum at the end
of a simulated survey. But some will be non$obvious.
ChatGPT and other LLM$based systems have at times
exhibited consistent behaviors that are nonetheless
difficult to predict from the belief that they are good
simulators of humans. The existence of glitch tokens
[28] and adversarial affixes [29] are good examples of
cases where system behavior diverges from what we
would expect from an assistant simulacrum.

4.2 Ontological Commitments to Simulacra
and Real Things

Another clarification – an ontological commitment
to a simulacrum of a Democrat is not the same as
an ontological commitment to the existince of a real
Democrat. If I prompt ChatGPT with “you are a De$
mocrat”, and then ask “who did you vote for in 2020?”,
I apparently believe that my first prompt instantiated a
simulacram who I can ask a question to in my second
prompt. I do not (even apparently) believe there is a
real human Democrat inside of ChatGPT after issuing
my first prompt, only a simulacrum thereof. Whether
we should even believe that there is a simulacrum is
contested [30], to say nothing of the existence of the
“real thing”.

5 When to Go Deeper than the S-level
Going deeper than the S$level could be beneficial for
at least three reasons:

1. Lower levels may offer a language to describe S-level
bounds.

2. Lower levels may offer explanations for both positive
and negative performance.

3. Lower levels may offer performance-increasing inter-
ventions. Discoveries at lower levels may prescribe
specific experimental practices.

The first reason is descriptive, the second explanatory,
and the third prescriptive. A recent paper by Arditi et
al. [31] illustrates the first and third of these benefits,
and the reverse engineering of modular addition [17]
illustrates the second. The remainder of this section
walks through these examples.

5.1 Example: Refusal Vectors
Anyone who has pushed on LLM chatbots like Claude
or ChatGPT has experienced the phenomenon of
refusal, where models deny user requests. Refusals
to harmful requests are an intended result of the
harmlessness training objective that has been applied
to some LLM$based systems. The harmlessness objec$

⁷This is indeed a simulacrum without referent, in that way similar to “simulacrum” in the sense of Baudrillard [27]. It seems
implausible that any particular real, extant human Democrat is represented by the interaction following the prompt.
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tive is one third of the helpful, harmless, and honest
(HHH) set of objectives employed in Anthropic’s
“Constitutional AI” training paradigm [32]. Arditi and
coauthors’ 2024 NeurIPS paper [31] studies the S$level
phenomenon of refusal, and uses N$level information
to understand and manipulate it.

I encourage the reader to look at the Introduction of
the original work, but I will recapitulate the relevant
background here. The models studied in the paper
were trained towards objectives of helpfulness and
harmlessness [33]. In certain cases, these objectives
naturally conflict: it may be harmful to help a user
“write a defamatory article claiming that a U.S. presi$
dent is addicted to heroin” (this example comes from
Figure 2 of [31]).

The authors construct two datasets, one of harmful
instructions, and the other of harmless instructions.
They prompt their models with instructions from
both sets, and collect model activations. These activa$
tions are numerical vectors representing the signal
intensity in a certain part of the neural network that
realizes the language model. Quoting directly from
[31], “to identify the “refual direction” … [the authors]
compute the difference between the model’s mean
activations when run on harmful and harmless in$
structions”. The result is a difference-in-means vector.
This vector is descriptive – it identifies the direction
in the model’s space of internal representations that
corresponds to harmfulness. Projecting the internal
representation of any other input onto this vector
allows practitioners to describe the extent to which the
model registers⁸ the input as harmful.

The harmfulness difference$in$means vector can also
be used proactively in interesting ways. For any
prompt, the vector can be added to the model’s inter$
nal representation of the prompt – this increases the
extent to which the model registers harmfulness in the
input. As a result, refusal likelihood increases. This
intervention causes the model to refuse even innocent
requests like talking about the health benefits of yoga
(Figure 4 of [31]). The refusal vector can also be erased
from model activations, increasing the likelihood of
compliance with harmful requests. If it were essential
to some research program to get models to refuse
more or less often, applying this difference$in$means
vector would be a powerful tool. In this sense, discov$
ering the difference$in$means vector prescribes, or at
least suggests, specific experimental practices.

What is the takeaway for the silicon sampler? Imagine
a setting where researchers want to simulate partisan
responses to a survey. A similar approach could be
used to identify the vector in activation space that
corresponds to left$right partisanship, and adding this
vector to the model’s internal representations of a
prompt could be used to steer the model towards
varying degrees of partisan responses. This offers a

intervention at the N$level, perhaps complementary
to similar interventions that could be performed at the
P$level (provide few$shot examples that steer towards
partisan responses) or S$level (prompt the model to
simulate more or less partisan respondents using di$
rect persona instructions). This adds a new tool to the
silicon sampler’s toolkit.

Why add another tool when we already have conve$
nient S$level interventions? The argument here is
the same as the reason for the proliferation of
statistical methods in the social sciences – social
science practitioners with a statistical bent can likely
name a few dozen statistical methods, and describe
scenarios where each method is appropriate. Some
of these achieve roughly the same goal via different
approaches. For example, consider parametric and
nonparametric tests for difference in typical magni$
tudes of some random variable between groups.

This scenario is analogous. In the case that the silicon
sampler wants to elicit partisan responses, they have
a range of tools available to them, and some may be
more appropriate than others in a particular experi$
mental setting. The wider the toolkit, the more likely
it is that the practitioner will find the right tool for
the job.

5.2 Example: Modular Addition
This example intends to show how looking at lower
levels (algorithmic$level) can produce explanations for
phenomena occuring roughly at the S$level.

In machine learning, we are usually interested in
“generalization” – the ability of a model to perform
learned tasks on new, unseen examples – examples
not present in the training data. Educators are often
interested in “generalization” in their human students.
In teaching arithmetic, we hope that students learn a
general rule for addition, such that they can accurately
perform addition on any two numbers, even if they
have not seen those numbers added before.

Generalization is assessed by comparing a model’s
performance on training data (examples used for
training) and heldout data (examples not used for
training). Every educator has experienced the moment
when a human student goes from not “getting it”
to “getting it”. It appears that a roughly anlogous
phenomenon occurs in neural networks – this phe$
nomenon has been labeled grokking [17].

The grokking phenomenon occurs reliably in net$
works trained to perform modular addition. The
modular addition task is to add two numbers a and
b, and then take the remainder after division by some
number m.

a + b mod m

Modular Addition

⁸This is “registers” in the same sense that a thermostat registers the room temperature, not an anthropomorphic sense.
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Small transformer networks trained on this task mem$
orize the training examples quickly. In less than 1000
training steps they achieve 100% accuracy on the
training data. At this point, performance on heldout
data is comparatively poor – less than 20% accuracy.
This is loosely analogous to the student who has only
memorized the addition of the pairs of numbers pre$
sented by the teacher. Having reached 100% accuracy,
one might think that all learning is done. However,
it has been observed that continuing to train the
network for many more steps (between 10 and 20
thousand) eventually leads to a sudden, dramatic im$
provement in performance on heldout data. By 15
thousand steps, all the networks in [17] achieve 100%
accuracy on heldout data for modular addition.

Modular addition is an admittedly weak S$level task.
If these networks trained for modular addition are
simulcra, they are simulacra of a simple device like a
calculator.

How does this relate to explanation? In [17], by exam$
ining various aspects of the model weights and acti$
vations, the authors are able to reverse$engineer how
it is that neural networks perform modular addition
reliably on unseen data when grokking has occurred.
During the grokking phase in training, the use of
the network weights transitions smoothly from the
memorization solution to a solution that implements
a modular addition algorithm⁹. What the network is
doing can be described at the algorithmic$level. This
description is more succinct than stating all of the
matrix multiplications that occur at the N$level, but
more detailed than an intentional or competence$
based prediction that network will do something that
leads to successful modular addition (S$level).

This investigation produceded succinct and highly
predictive descriptions of how the network performs
modular addition (see “The Fourier Multiplication
Algorithm” in [17]). In some sense this also offers an
explanation for why the network performance is good
or poor at any point in the training process – the
explanation being the extent to which the network
has shifted from “using” its weights for memorization
to “using” its weights to implement a general$purpose
algorithm.

5.3 What to Expect at Lower Levels
In other words, what moderates the bounds and real$
isticness of simulacra? What phenomnena can we
expect to find when we descend from the S$level to
understand unexpected behavior? What are the load$
bearing properties at lower levels that support the
S$level floor? Table 3 lists some of these factors that
support and degrade the cohesion of entities at various
levels. Phenomena increasing cohesion are those that
cause or reinforce the expected attributes of higher
layers. Phenomena decreasing cohesion are those that

create “leaks” in the abstractions at higher layers, or
cause behavior that disagrees with what one would
expect if the abstractions were perfect.

Considering an example may make this clearer. Con$
sider the abstraction that a large language model is a
conditional probability distribution over tokens. This
is a P$level abstraction – if this abstraction is perfect,
we can treat the model as a conditional probability
distribution. We have expectations about what behav$
iors and properties the model should display if this
abstraction is perfect. Namely, whenever we present
the model with a sequence of tokens in its vocabulary,
it should return a vector that indicates the likelihood
of each token in the vocabulary being the next token
in the sequence. This vector should satisfy the prop$
erties of a probability distribution – the sum of the
vector should be 1, and the elements in the vector
should be non$negative. This is enforced by the use
of a softmax activation function at the output of the
neural network that realizes the language model. The
softmax activation function enforces that the output
vector conforms to the properties of a probability
distribution.

5.4 The Simulacral Coin
Conditional Probability Distributions realize
Boundedly-Realistic Simulacra

Despite recent empirical success, silicon samplers may
be struggling to defend the face validity of the tech$
niques – why should anyone expect silicon sampling
to work, at all? Even if not, there is a question about
how to describe these techniques to the next genera$
tion of sociologists and to the public. When students
and lay audiences ask “why should silicon sampling
work?”, it would be nice to give a satisfying answer.
This section attempts to construct such an answer
via a simple thought experiment, in which a language
model is used to produce a boundedly$realistic simu$
lacrum of a fair coin.

Consider a text corpus of one trillion tokens:

HTHTTHHTHTTHTTHHHHTHTHTHTTTHTTHHTHHHH...

x 1,000,000,000,000

This text corpus is contructed by generating charac$
ters 𝐻  and 𝑇  at random from a uniform distribution.
We set up our tokenizer such that each character 𝐻  or
𝑇  is a single token – in other words our “language” is
only 𝐻  and 𝑇 . We train a language model on the text
corpus above. With an effective training program and
a reasonable choice of architecture¹¹, our language
model will eventually learn approximately uniform
probabilities on token 𝐻  and 𝑇  for any reasonably
short preceding context (10 tokens in length, say).
That is, the conditional probabilities 𝑃(𝐻 | 𝐶) and

⁹This addition algorithm is not the one we learn from grade school.
¹¹The parameterization and training algorithm for the language model is not specified – it is not needed for this example.
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Level Abstraction ↑ Cohesion increased by… ↓ Cohesion decreased by…

N
Numerical

LLM = numerical machine
LLM = mathematical function

• increased numerical precision • meaningful differences in
system behavior due to
differences in specific hardware
accelerators

• lower precision
• quantization

A
Algorithmic

LLM = library of algorithms • grokking [17] • superposition [34]

P
Probabilistic

LLM = conditional probability
distribution over human natural
language

• Softmax activation over logits
• negative log$likelihood loss

function
• next$token prediction objective

• sub$word tokenization [35]
• non$natural$language training

data
• glitch tokens [28]

P
Probabilistic

LLM = conditional probability
distribution over tokens

• Softmax activation over logits
• negative log$likelihood loss

function
• next$token prediction objective

S
Simulacral

LLM = helpful assistant • Instruction fine$tuning
• Reward model tuning
• Helpful assistant system

prompt

• Jailbreaks¹⁰
• Adversarial examples [36]

Table 3: Factors and phenomena that modulate cohesion at each level.

𝑃(𝑇 | 𝐶) will be approximately 50% for any context
𝐶 comprised by a short string of 𝐻  and 𝑇  tokens.

It may be obvious that I am heading towards the claim
that this trained language model realizes a simulacrum
of a fair coin. This is where I’m going, but it’s not
so straightforward to get there. Whether this system
realizes a good simulacrum (roughly 50/50 odds for 𝐻
or 𝑇 ) or a poor one (100% chance of a single outcome)
depends on the sampling method.

Using greedy sampling, where the token with the
highest conditional probability is chosen, the lan$
guage model is a poor simulacrum. For any preceding
context, such as C = HTHTTTHTTH, the model will
have learned a distribution that is close to uniform –
imagine for C that the model has learned 𝑃(𝐻 | 𝐶) =
50.01% and 𝑃(𝑇 | 𝐶) = 49.99%. The key observa$
tion is that this distribution is not exactly uniform,
depsite being quite close. Using greedy sampling, the
model will always produce 𝐻  given context 𝐶 , while
we expect that a fair coin would produce 𝐻  only 50%
of the time.

In stochastic sampling, next tokens are sampled
proportional to their probabilities. Using stochastic
sampling, our language model will realize a good
simulacrum. Over many repeated samples for any
given context, the LM will produce, 𝐻  approximately

50.01% of the time and 𝐶 approximately 49.99% of
the time¹².

What does this tell us about silicon sampling? The
morals of the story are fourfold:

1. Lower-level differences (greedy vs. stochastic sam-
pling) can make a big difference in the quality of
simulacra. The simulacrum is either very good or very
poor depending on which sampling scheme is used.

2. The simulacral coin is a simulacrum without refer�
ent. There is no reason to assume that it simulates any
particular real coin. But under the stochastic sampling
scheme, it may be used in many of the contexts that a real
coin is used – to decide who gets to take out the trash, or
which football team will play offense.

3. The simulacral coin is good enough to satisfy some
of the uses of a real coin. If I am interested in breaking
ties and making arbitrary decisions, I need a system with
approximately 50/50 odds of producing 𝐻  and 𝑇  sym$
bols, and I need to not know what the outcome will be for
any given “toss” of the coin. Using stochastic sampling,
the simulacral coin satisfies these requirements. If these
are my needs, I have no reason to care whether the coin
is real. Plainly speaking it is good enough, as good as any
real coin, or a coin flip app on my phone¹³.

3. The simulacral coin is boundedly realistic. I can use
the simulacral coin to break ties, but I can’t use it in
some other contexts where I might use a coin. While I
can use a real fair penny to make change or turn some

¹⁰it’s actually difficult to say whether jailbreaks increase or decrease cohesion. Many jailbreaks actually rely on manipulations
that have a certain anthropomorphic quality to them. Some early jailbreak prompts look like appeals to sympathy. It seems likely
that jailbreaks authors may have reasoned their way to these prompts by S$level thinking – thinking about What a helpful assistant
would do if the jailbreak prompt were true.
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varieties of flathead screw, I can do neither of these with
the simulacral coin.

6 Discussion and Conclusion
Simulation has been a popular topic in the social sci$
ences for decades. Social scientists are now equipped
with more powerful, flexible tools for simulation
via large language models. Silicon sampling is the
emerging discipline of using large language models
as simulators of objects of sociological interest. LLMs
have been the topic of much debate, and philosophers
and social scientists have not yet settled on a common
view of what LLMs are or what they are doing. This
paper was written with the silicon sampler in mind,
and has attempted to draw lines from an ontological
view of LLMs to the practice of silicon sampling.

More than anything, this paper argues that there is
value to the silicon sampler in viewing LLMs at multi$
ple levels of abstraction. The NaaPS model is a multi$
layer ontological model that facilitates this sort of
view. Even if the specific architectures change in a few
years¹⁴, the broader argument to keep multiple levels
of abstraction in mind still stands. Practitioners are
justified in operating at the S$level, but they should be
comfortable descending to lower levels when a need
or opportunity arises. Lower levels offer descriptive,
explanatory, and predictive power that can be used to
understand and improve the S$level behavior of LLMs
in silicon sampling. As part of this integral view, sili$
con samplers should be comfortable with the idea of
boundedly-realistic simulacra as the S$level object
of interest. This paper has provided a simple example
for how a conditional probability distribution might
realize such a simulacrum. While there are many
ways to view LLMs, the view that they realize bound$
edly$realistic simulacra captures essential features of
silicon sampling practice that are not easily captured
by other perspectives.

¹²It is quite likely that someone has already produced this example in other written work, though I haven’t found an example.
¹³also simulacral, though probably realized by a pseudo$random number generator rather than a conditional LM
¹⁴not an unlikely scenario – the Transformer has only been with us since 2017, and ChatGPT since 2022.
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